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Abstract
Objective  We aimed to perform an external validation of an existing commercial AI software program (BoneView™) for 
the detection of acute appendicular fractures in pediatric patients.
Materials and methods  In our retrospective study, anonymized radiographic exams of extremities, with or without fractures, 
from pediatric patients (aged 2–21) were included. Three hundred exams (150 with fractures and 150 without fractures) were 
included, comprising 60 exams per body part (hand/wrist, elbow/upper arm, shoulder/clavicle, foot/ankle, leg/knee). The 
Ground Truth was defined by experienced radiologists. A deep learning algorithm interpreted the radiographs for fracture 
detection, and its diagnostic performance was compared against the Ground Truth, and receiver operating characteristic 
analysis was done. Statistical analyses included sensitivity per patient (the proportion of patients for whom all fractures were 
identified) and sensitivity per fracture (the proportion of fractures identified by the AI among all fractures), specificity per 
patient, and false-positive rate per patient.
Results  There were 167 boys and 133 girls with a mean age of 10.8 years. For all fractures, sensitivity per patient (average 
[95% confidence interval]) was 91.3% [85.6, 95.3], specificity per patient was 90.0% [84.0,94.3], sensitivity per fracture 
was 92.5% [87.0, 96.2], and false-positive rate per patient in patients who had no fracture was 0.11. The patient-wise area 
under the curve was 0.93 for all fractures. AI diagnostic performance was consistently high across all anatomical locations 
and different types of fractures except for avulsion fractures (sensitivity per fracture 72.7% [39.0, 94.0]).
Conclusion  The BoneView™ deep learning algorithm provides high overall diagnostic performance for appendicular fracture 
detection in pediatric patients.

Keywords  Fracture · Pediatric · Adolescent · AI · Emergency · Diagnostic performance

Introduction

Globally speaking, the application of artificial intelligence 
(AI) based on deep learning in radiology is expanding rap-
idly. When it comes to its application specifically in Pediat-
ric Radiology, the literature evidence exists since 2009 for 
bone age assessment based on radiography [1, 2]. In fact, 
there are only three pediatric-specific AI software programs 
available in the market today, and they are all targeting bone 
age assessment [3–7].

When it comes to deep learning tools for fracture detec-
tion, there are several software tools available, but none of 
them are specifically tailored for the pediatric patient popu-
lation [3]. Literature evidence pertaining to AI-assisted 
detection of appendicular fractures in pediatric patients 
remains limited, focusing only on elbow trauma/fractures 
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[8–10]. These studies reported encouraging results with 
high sensitivity (ranging 0.91–0.93) and specificity (ranging 
0.84–0.92) values, but with relatively low positive predic-
tive values (ranging 0.70–0.87) [8–10]. The current role of 
deep learning tools seems to be limited to the initial triage 
of elbow radiographs for pediatric patients presenting with 
elbow trauma, especially at institutions where dedicated 
pediatric or musculoskeletal radiologists are not immedi-
ately available [3].

In adult patients, however, investigators have reported the 
use of deep learning tools for the detection of wider varieties 
of appendicular fractures [11–18]. There has been no pub-
lication describing a deep learning model that is capable of 
detecting all appendicular fractures (i.e., not limited to elbow 
or wrist fractures) in pediatric populations. Given the fact 
that fracture patterns and radiographic findings in pediatric 
patients differ from those in adult patients, it is unknown if 
a commercial deep learning AI software program (BoneV-
iew™, available in Europe, but not yet in the USA) that is 
created, trained, and validated using adult patients and sub-
sequently trained on pediatric patients can be successfully 
applied to pediatric patients for automated appendicular 
fracture detection. We hypothesized that the deep learning 
algorithm can successfully detect pediatric fractures using 
the experienced musculoskeletal radiologists’ reading as the 
ground truth. The aim of our study is to determine the diag-
nostic performance of the AI software based on a deep learn-
ing algorithm (BoneView™ which was previously trained 
using the adult and pediatric patients) for detection of acute 
appendicular fractures in pediatric patients presenting with 
a recent history of trauma.

Materials and methods

Dataset

Our current external validation study using the images col-
lected from a USA-based data provider was approved by 
the WellCare Group (WCG) institutional review board 
(approval number 20202256). The need for informed con-
sent was waived because our study was retrospective and all 
images were totally anonymized and stripped of any clinical 
information.

All anonymized digitalized radiographic images were 
provided from a single US-based data provider meeting all 
HIPAA requirements. Greater than 1,000,000 post-traumatic 
radiographic exams were screened using a Natural Language 
Processing (NLP) algorithm for relevance based on radiol-
ogy reports with stratification by body parts and the pres-
ence/absence of fractures in pediatric patients (aged 2 to 
21 years). Exams with one or more images including a body 
part not concerned by the intended use of the AI software 

(pelvis, skull, spine, rib cage) were excluded. This was 
because pelvic, spine, and rib fractures are rare in children, 
and we estimated that there were insufficient data in the 
training dataset to be able to correctly detect these fractures 
in a pediatric population. The power calculation was based 
on a previous study [18] that investigated the same AI soft-
ware for fracture detection in an adult population. Our study 
narrowed it down from 480 examinations to 300 because 
we only investigated 5 out of the 8 body parts included in 
the previous study. We selected the same amount of X-rays 
per body part and the same prevalence of 50% of positive 
examinations in each body part. Initially, 380 radiographic 
exams were provided and presented in a random order to 
the musculoskeletal radiology readers for interpretation. Of 
these, 50 exams were excluded due to the fracture being 
non-acute, 5 exams were excluded due to poor image quality 
or a lack of minimally required number of views for mak-
ing a correct radiographic diagnosis, and 25 exams were 
excluded because the quota for each anatomical location 
had already reached. In the end, 300 radiographic exams 
were included in our study, with half of the patients hav-
ing acute fractures. There is no overlap between these 300 
exams and those used to develop the AI algorithm. There 
were 60 exams per body part (hand/wrist, elbow/upper arm, 
shoulder/clavicle, foot/ankle, leg/knee). The summary of the 
study design is shown in Fig. 1. The flowchart of the study 
sample determination (inclusion and exclusion of cases) is 
shown in Fig. 2. There were 167 boys (88 with fractures) 
and 133 girls (62 with fractures) with the mean (± standard 
deviation) age of 10.8 ± 4.9 years (Table 1), and 173 frac-
tures in total. Details of anatomical locations of the fractures 
determined by the Ground Truth are summarized in Table 2. 
Transverse fractures were the most common type of fracture 
(56 of 173 fractures).

Ground truth

Two experienced board-certified musculoskeletal radiolo-
gists (who had 12 years and 8 years of experience in reading 
pediatric bone X-rays) independently read all radiographs 
and annotated the presence of fractures on digital radio-
graphs using a proprietary image viewer which was part of 
the BoneView™ software package (Gleamer, Paris, France). 
Only acute fractures were considered positive findings in 
this study. A bounding box was placed to cover the entirety 
of the fracture, and anatomical location and types of the 
fracture were recorded [19]. Each fracture was classified as 
either “non-obvious (subtle nondisplaced fractures that can 
be missed by nonexpert readers)” or “obvious (clearly dis-
placed, angulated, comminuted, or otherwise readily iden-
tifiable).” If the bounding boxes of the two readers over-
lapped with an Intersection over Union (IoU) of > 25% and 
the bone specified by the two radiologists was the same, 
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then the agreement was reached. The ground truth was then 
defined as the union between the two boxes. An IoU of 25% 
seemed reasonable considering that if the fractures pointed 
by the two radiologists were on different bones, a third 

expert musculoskeletal radiologist with 26 years of experi-
ence was required to reach a consensus by the three readers 
to adjudicate the discrepancy. Agreement means that two 
radiologists agreed on the diagnosis without an adjudication 

Fig. 1   Flowchart summarizing the study design

Fig. 2   Flowchart of the study 
sample determination (inclusion 
and exclusion of cases)
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process. Results of the AI reading were not available to these 
three radiologists. A fourth reader, a board-certified pediat-
ric radiologist with 4 years of experience, also reviewed all 
radiographs after determination of Ground Truth and clas-
sified all fractures into different types (transverse, oblique, 
buckle, avulsion, comminuted, greenstick, spiral, longitudi-
nal, hairline, apophyseal avulsion, plastic bending/bowing 
fracture, and impaction), and ensured known anatomical 
variants in the pediatric population are correctly identified 
and not mistakenly diagnosed as a fracture.

Deep learning algorithm

The AI software (BoneView™, Gleamer, Paris, France) 
was previously engineered, trained, and validated to 

localize fractures on full-resolution Digital Imaging and 
Communications in Medicine (DICOM) images. The full 
details of how the deep learning algorithm was developed 
have already been described in the existing literature [13, 
18]. Thus, only a very brief description of the technical 
aspects of our deep learning algorithm development is 
provided herein. To develop the algorithm, we gathered a 
dataset of 312,602 radiographs of patients from 60 + radi-
ology departments from January 2011 to May 2021 [13, 
18]. This dataset was then randomly split into 70% train-
ing, 10% validation, and 20% internal test sets. The train-
ing dataset included 30% of patients under 21 years old. 
None of the X-ray images used in the current study was 
previously used in the development of the BoneView™ 
software. The deep learning algorithm is based on the 
Detectron2 framework [20]. Detectron2 is an open-source 
object detection platform developed by Facebook AI 
Research and is written in PyTorch (https://​pytor​ch.​org/), 
an open-source machine learning framework containing a 
library for Python programs that facilitates building deep 
learning projects. The AI receives as input the full-resolu-
tion DICOM image and extracts intermediate feature maps 
from the X-ray images. The final pipeline of the algorithm 
can run at different sensitivity and specificity operating 
points. The software highlights the region of interest using 
a rectangular box on the radiographic images. Additional 
editing and refinement of the algorithm were carried out 
and subsequently integrated into a radiological image 
interpretation software developed by Gleamer as a tool to 
support the detection of fractures [13, 18].

The best model was selected based on the free-response 
receiver operating characteristic (FROC) curves at differ-
ent operating points (a very specific operating point and 
a very sensitive operating point) on the internal test set. 
The final operating points were chosen to obtain a nega-
tive predictive value of 99.5% to minimize the false nega-
tives of the algorithm rather than the false positives. All 
model development was carried out in Python (version 
3.6) with all typical libraries including Pydicom used to 
read DICOM images.

Table 1   Demographics by anatomical location

Fracture positive Fracture negative Total

Body regions Boys n/N (%) Age Mean ± SD Boys n/N (%) Age Mean ± SD Boys n/N (%) Age Mean ± SD

Foot/ankle 17/30 (56.7%) 11.2 ± 4.9 19/30 (63.3%) 11.1 ± 5.7 36/60 (60.0%) 11.1 ± 5.3
Knee/leg 17/30 (56.7%) 10.3 ± 5.2 16/30 (53.3%) 10.4 ± 4.8 33/60 (55.0%) 10.4 ± 5.0
Hand/wrist 13/30 (43.3%) 10.3 ± 4.2 10/30 (33.3%) 11.3 ± 4.1 23/60 (38.3%) 10.8 ± 4.2
Elbow/arm 24/30 (80.0%) 12.1 ± 5.4 14/30 (46.7%) 10.4 ± 5.0 38/60 (63.3%) 11.3 ± 5.3
Shoulder/clavicle 17/30 (56.7%) 9.8 ± 4.5 20/30 (66.7%) 11.3 ± 4.4 37/60 (61.7%) 10.5 ± 4.5
Total 88/150 (58.7%) 10.7 ± 4.9 79/150 (52.7%) 10.9 ± 4.9 167/300 (55.7%) 10.8 ± 4.9

Table 2   Details of anatomical locations of the fractures determined 
by the Ground Truth

Body region Fractured bone Number of fractures: 
N (%)

Total All 173 (100.0%)
Foot/ankle Phalanges 10 (5.8%)

Metatarsus 21 (12.1%)
Tarsus 3 (1.7%)
Distal fibula 2 (1.2%)
Distal tibia 1 (0.6%)

Knee/leg Femur 8 (4.6%)
Tibia 18 (10.4%)
Fibula 5 (2.9%)
Patella 5 (2.9%)

Hand/wrist Distal radius 9 (5.2%)
Distal ulna 5 (2.9%)
Metacarpus 5 (2.9%)
Phalanges 18 (10.4%)

Elbow/arm Humerus 14 (8.1%)
Radius 14 (8.1%)
Ulna 5 (2.9%)

Shoulder/clavicle Proximal humerus 8 (4.6%)
Clavicle 22 (12.7%)

https://pytorch.org/
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Statistical analyses

All statistical evaluations were done using Python (version 
3.9, libraries SciPy, Scikit-learn, and Pandas). We set the 
significance threshold at p < 0.05 two-sided for all secondary 
analyses without multiple testing procedures.

To define the true positive, we identified the center of the 
AI box: if it was inside a Ground Truth box, then the fracture 
was a true positive; if it was outside the box, it was con-
sidered a false positive. The sensitivity (true positive/[true 
positive + false negative]) per patient was defined as the pro-
portion of patients for whom all actual fractures were identi-
fied (each one, on at least one radiographic view), includ-
ing potentially multiple fractures at more than one region, 
among patients who had at least one fracture, even if some 
incorrect marks (false positives) had been detected by the 
AI. The specificity (true negative/[true negative + false posi-
tive]) per patient was defined as the proportion of patients 
for whom no fracture mark was detected by the AI among 
patients without any fracture.

The sensitivity per fracture was defined as the propor-
tion of fractures correctly identified by the AI among all 
fractures, counting multiple fractures per patient where 
appropriate. The average number of false-positively reported 
fractures per patient was defined as the mean number of AI 
boxes positioned outside of a fracture per patient.

We assessed the standalone AI performance using the 
ROC curve which was derived from the per-patient metrics as 
described above, using a pre-defined high-sensitivity thresh-
old. This threshold value was manually set in the develop-
ment set to correspond to a very high negative predictive value 
(99.5%). Where relevant, 95% confidence intervals (CI) were 
calculated using Clopper-Pearson exact method [21] to avoid 
aberrations for proportions equal to 0 or 1.

Results

Overall fracture detection performance

For all fractures, the sensitivity per patient (average 
[95%CI]) was 91.3% [85.6, 95.3], the specificity per 
patient was 90.0% [84.0, 94.3], the sensitivity per frac-
ture was 92.5% [87.0, 96.2], the average number of false-
positively reported fractures per patient in patients who 
actually had fractures elsewhere was 0.11 [0.07, 0.18], and 
the average number of false-positively reported fractures 
per patient in patients who did not have fractures was 0.11 
[0.06, 0.17]. Patient-wise AUC was 0.93 [0.88, 0.97] for 
all fractures (Table 3). ROC curve for AI diagnostic per-
formance is shown in Fig. 3a.

Performance stratified by demographics and body 
parts

These excellent diagnostic performances were main-
tained regardless of patient age group (153 children [aged 
2 years or greater and less than 12 years] versus 147 ado-
lescents [aged 12 years or greater and less than or equal 
to 21 years]; Table 4). There were 100% [88.4, 100] sen-
sitivity per patient and sensitivity per fracture with AUC 
of 0.99–1.00 [0.87, 1.00] for all upper extremity fractures, 
while those for lower extremity fractures were lower (sen-
sitivity per patient and sensitivity per fracture were < 85% 
with AUC of 0.85; Fig. 3b). The average number of false 
positively reported fractures was highest for the shoulder/
clavicle fractures (0.20 [0.08, 0.39] for patients who did 
not have any fractures, and 0.17 [0.06, 0.35] for patients 
who had fractures elsewhere).

Table 3   AI performance for fracture detection

AUC​ area under receiver operator curve, CI confidence interval

Sensitivity per 
patient (%) [95% CI]

Specificity per 
patient (%) [95% CI]

Sensitivity per frac-
ture (%) [95% CI]

Average number 
of false positively 
reported fractures 
per patient in 
patients without 
fracture [95% CI]

Average number 
of false positively 
reported fractures per 
patient in patients with 
fracture [95% CI]

Patient-wise AUC 
[95% CI]

Foot/ankle 83.3% [65.3, 94.4] 90.0% [73.5, 97.9] 86.5% [69.1, 96.2] 0.13 [0.04, 0.31] 0.13 [0.04, 0.31] 0.85 [0.68, 0.96]
Knee/leg 73.3% [54.1, 87.7] 100.0% [88.4, 100.0] 77.8% [58.9, 90.8] 0.00 [0.00, 0.12] 0.07 [0.01, 0.22] 0.85 [0.67, 0.95]
Hand/wrist 100.0% [88.4, 100] 86.7% [69.3, 96.2] 100.0% [88.4, 100] 0.13 [0.04, 0.31] 0.07 [0.01, 0.22] 0.99 [0.88, 1.0]
Elbow/arm 100.0% [88.4, 100] 90.0% [73.5, 97.9] 100.0% [88.4, 100] 0.10 [0.02, 0.27] 0.10 [0.02, 0.27] 0.99 [0.87, 1.0]
Shoulder/clavicle 100.0% [88.4, 100] 83.3% [65.3, 94.4] 100.0% [88.4, 100] 0.20 [0.08, 0.39] 0.17 [0.06, 0.35] 1.0 [0.88, 1.0]
Total 91.3% [85.6, 95.3] 90.0% [84.0, 94.3] 92.5% [87.0, 96.2] 0.11 [0.07, 0.18] 0.11 [0.06, 0.17] 0.93 [0.88, 0.97]



	 Skeletal Radiology

1 3

Performance stratified by types of fractures

When stratifying the data by the types of fractures, AI diag-
nostic performance was excellent for the buckle, greenstick, 
hairline, transverse, oblique, spiral, comminuted, and lon-
gitudinal fractures with sensitivity per fracture of 90.0 to 
100.0%. Except for transverse fractures (91.1% [80.4, 97.0]), 
these fractures showed relatively wide ranges of 95% CIs 
due to small sample size, particularly for hairline and longi-
tudinal fractures (both 100.0% [29.2, 100.0] (Table 5). Based 

on the location of the bone, AI performance was excellent 
for 32 diaphyseal (sensitivity per fracture of 96.9% [83.8, 
99.9]) and 87 metaphyseal fractures (sensitivity per fracture 
of 93.1% [85.6, 97.4]), but was lower for 24 epiphyseal frac-
tures (sensitivity per fracture of 87.5% [67.6, 97.3]; Table 6). 
However, AI detected 100% of 21 Salter-Harris type II frac-
tures (95% CI 83.9, 100.0) and 3 type IV fractures (95% CI 
29.2, 100.0). AI performance was higher for 125 obvious 
fractures (sensitivity per fracture of 95.2% [89.9, 98.2]) than 
48 non-obvious fractures (85.4% [72.2, 93.9]; Table 7).

Fig. 3   a AI receiver operating 
characteristic (ROC) for fracture 
detection in pediatric patients. b 
Separate ROC curves for detec-
tion of upper extremity fractures 
and lower extremity fractures
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Fractures missed by AI software

Five false-negative cases were noted in the foot/ankle region, 
including the bowing, buckle, and transverse fractures. Out of 8 
false negatives on the leg/knee region, 3 were epiphyseal frac-
tures (for which AI performance was noticeably lower), none 
were bowing, and 3 were patellar fractures. Figure 4 shows 
examples of false negative, false positive, and true positive cases.

Discussion

This study showed that our AI software provided high 
overall diagnostic performance for appendicular fracture 
detection in pediatric patients, including types of fractures 
that are unique to skeletally immature patients such as 
buckle fractures, greenstick fractures, toddler’s fractures, 
and Salter-Harris fractures. Previously, it was shown that 
AI-assisted adult fracture detection was feasible with 
high diagnostic performance [13, 18]. Because fractures 
in pediatric patients are unique and different in terms of 
types/imaging appearance and typical anatomical locations 
than those in skeletally mature patients [22, 23], it was 
necessary to demonstrate that automated fracture detection 
by AI software was possible in a dedicated pediatric study 
population. In the current study, overall patient-wise AUC 
for all fractures was 0.93, which is compatible with previ-
ously published adult-based studies in which AUC values 
of 0.94 [13] and 0.93 [18] were reported.

Our AI software showed excellent diagnostic perfor-
mance for fractures that are common regardless of patient 
age (such as transverse and oblique fractures) as well as 

Ta
bl

e 
4  

A
I p

er
fo

rm
an

ce
 fo

r f
ra

ct
ur

e 
de

te
ct

io
n 

de
pe

nd
in

g 
on

 a
ge

C
hi

ld
re

n 
ar

e 
ag

ed
 2

 y
ea

rs
 o

r g
re

at
er

 a
nd

 le
ss

 th
an

 1
2 

ye
ar

s. 
C

hi
ld

re
n 

ar
e 

fu
rth

er
 s

ub
di

vi
de

d 
in

to
 2

 y
ea

rs
 o

r g
re

at
er

 a
nd

 le
ss

 th
an

 6
 y

ea
rs

, a
nd

 6
 y

ea
rs

 o
r g

re
at

er
 a

nd
 le

ss
 th

an
 1

2 
ye

ar
s. 

A
do

le
s-

ce
nt

s a
re

 a
ge

d 
12

 y
ea

rs
 o

r g
re

at
er

 a
nd

 le
ss

 th
an

 o
r e

qu
al

 to
 2

1 
ye

ar
s

AU
C

​ a
re

a 
un

de
r r

ec
ei

ve
r o

pe
ra

to
r c

ur
ve

, C
I c

on
fid

en
ce

 in
te

rv
al

N
um

be
r o

f 
pa

tie
nt

s
Se

ns
itiv

ity
 pe

r p
ati

en
t (%

) 
[9

5%
 C

I]
Sp

ec
ifi

cit
y p

er 
pa

tie
nt 

(%
) 

[9
5%

 C
I]

Se
ns

iti
vi

ty
 p

er
 fr

ac
tu

re
 

(%
) [

95
%

 C
I]

Av
er

ag
e 

nu
m

be
r o

f 
fa

lse
 p

os
iti

ve
ly

 re
po

rte
d 

fra
ct

ur
es

 p
er

 p
at

ie
nt

 in
 

pa
tie

nt
s w

ith
ou

t f
ra

ct
ur

e 
[9

5%
 C

I]

Av
er

ag
e 

nu
m

be
r o

f 
fa

lse
 p

os
iti

ve
ly

 re
po

rte
d 

fra
ct

ur
es

 p
er

 p
at

ie
nt

 in
 

pa
tie

nt
s w

ith
 fr

ac
tu

re
 

[9
5%

 C
I]

Pa
tie

nt
-w

is
e 

A
U

C
 

[9
5%

 C
I]

C
hi

ld
re

n 
(2

–1
2 

ye
ar

s 
ol

d)
15

3
89

.6
%

 [8
0.

6,
 9

5.
4]

94
.7

%
 [8

7.
1,

 9
8.

5]
91

.2
%

 [8
2.

5,
 9

6.
5]

0.
05

 [0
.0

2,
 0

.1
2]

0.
09

 [0
.0

4,
 0

.1
8]

0.
92

 [0
.8

4,
 0

.9
7]

C
hi

ld
re

n 
(2

–6
 y

ea
rs

 
ol

d)
56

93
.1

%
 [7

7.
2,

 9
9.

2]
96

.3
%

 [8
1.

0,
 9

9.
9]

93
.8

%
 [7

9.
2,

 9
9.

2]
0.

04
 [0

.0
2,

 0
.1

3]
0.

07
 [0

.0
4,

 0
.1

3]
0.

95
 [0

.7
9,

 0
.9

9]

C
hi

ld
re

n 
(6

–1
2 

ye
ar

s 
ol

d)
97

87
.5

%
 [7

4.
5,

 9
5.

2]
93

.9
%

 [8
3.

1,
 9

8.
7]

89
.8

%
 [7

9.
2,

 9
6.

2]
0.

10
 [0

.0
2,

 0
.1

2]
0.

06
 [0

.0
1,

 0
.0

7]
0.

91
 [0

.7
9,

 0
.9

7]

Ad
ol

es
ce

nt
s (

12
–2

1 y
ea

rs
 

ol
d)

14
7

93
.2

%
 [8

4.
7,

 9
7.

7]
85

.1
%

 [7
4.

9,
 9

2.
4]

93
.9

%
 [8

5.
7,

 9
8.

2]
0.

18
 [0

.1
0,

 0
.2

8]
0.

12
 [0

.0
6,

 0
.2

2]
0.

94
 [0

.8
6,

 0
.9

8]

Table 5   AI performance for fracture detection depending on the frac-
ture type

CI confidence interval
* Number of fractures is too small for a statistically meaningful con-
clusion

Number of 
fractures

Sensitivity per fracture 
(%) [95% CI]

Transverse 56 91.1% [80.4, 97.0]
Oblique 54 100.0% [93.4, 100.0]
Buckle 20 90.0% [68.3, 98.8]
Avulsion 11 72.7% [39.0, 94.0]
Comminuted 8 100.0% [63.1, 100.0]
Greenstick 7 100.0% [59.0, 100.0]
Spiral 7 100.0% [59.0, 100.0]
Longitudinal 3 100.0% [29.2, 100.0]*
Hairline 3 100.0% [29.2, 100.0]*
Apophyseal avulsion 2 50.0% [1.3, 98.7]*
Plastic bending/bowing fracture 1 0.0% [0, 97.5]*
Impaction 1 0.0% [0, 97.5]*
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those unique to pediatric patients (such as buckle and 
greenstick fractures). There was only one bowing frac-
ture (or plastic deformations) which AI failed to detect. 
This type of fracture is typically seen in children com-
monly affecting the radius, ulna, and fibula [24]. Typical 
presenting history is a child developing pain and swelling 
of the forearm after a fall on an outstretched hand. On 
radiography, these fractures can be visualized as a bow-
ing deformity of the long bone without a visible fracture 
line or obvious cortical discontinuity. Thus, depending 
on the view of the radiograph and the direction of bow-
ing, the bone may appear normal [24]. This can make 
radiographic detection of bowing fractures difficult not 
only for human interpreters but also for AI software in 
theory. Unfortunately, we did not have a sufficient num-
ber of bowing fractures in our study population and thus 
cannot derive meaningful scientific evidence. Previously, 
an attempt was made to use a computer-aided detection 
(CAD) system to detect bowing fractures in the pediat-
ric forearm [25]. This CAD system showed an AUC of 
0.763 to 1.000 for differentiation of radius and ulna with 
bowing fractures from normal radius and ulna, depend-
ing on different threshold values used. However, this was 
not an AI algorithm and thus the diagnostic performance 
of their CAD system cannot be directly compared with 
more recent other AI-related studies. In contrast, our AI 
showed excellent to perfect sensitivity for detection of 
greenstick fractures and buckle fractures, which are likely 

because both these fractures exhibit a visible fracture line 
and cortical irregularity in addition to concurrent bowing 
that may be present. Radiographic diagnosis of a bowing 
fracture can be difficult without relevant clinical history, 
as other entities such as physiological bowing or bowing 
secondary to underlying pathology (e.g., neurofibroma-
tosis) may look identical to post-traumatic bowing of a 
long bone [26].

Sensitivity for fracture detection per fracture was 96.9% 
for diaphyseal fractures and 93.1% for metaphyseal fractures. 
However, detection of epiphyseal fractures was slightly 
lower (87.5%), even when taking into consideration that 
the number of epiphyseal fractures was lower than the other 
two resulting in a much wider 95% CI. Detection of iso-
lated epiphyseal fracture can be difficult even for human 
readers because of normal-variant irregular ossification of 
the epiphysis even in the absence of any fracture or other 
trauma. Similarly, detection of fractures only involving the 
physis (Salter-Harris Type I) can be difficult because a nor-
mal physis can look somewhat irregular in contour as well 
and the only radiographic abnormality may be a very sub-
tle widening of the physis. However, there was no case of 
Salter-Harris Type I fracture in our sample; thus, a statisti-
cal analysis of AI performance specifically for detection of 
Salter-Harris Type I fracture cannot be performed. Of note, 
our AI algorithm detected all 24 Salter-Harris type II and IV 
fractures in the study sample.

It is interesting to note that our AI software returned per-
fect fracture detection in all upper extremity fractures (hand/
wrist, elbow/arm, shoulder/clavicle) with 100% sensitivity 
per patient and per fracture. On the other hand, AI diagnostic 
performance was noticeably lower for lower extremity frac-
tures (< 87% sensitivity per fracture for foot/ankle and < 78% 
sensitivity per fracture for knee/leg). The overall low diag-
nostic performance for lower extremity fractures is despite 
the fact that each anatomical location had the same number 
of patients (60) and fracture-positive radiographic exams 
(30). A possible explanation for this is that we had fewer 
data on lower extremities in the training dataset. Another 
possible explanation is that there were more non-obvious 
fractures in the lower extremities (37%) than in the upper 
extremities (21%). Unsurprisingly, AI detection of obvious 
fractures showed much higher sensitivity than non-obvious 
fractures (95.2% versus 85.4%).

There are several reasons that can explain the false posi-
tives or false negatives of AI reading. They tend to be more a 
matter of the data than the AI/computer model. For instance, 
the algorithm might not be able to recognize a “rare” frac-
ture type, or an unusual view not present in its training data-
set. This is a generalization problem from the AI that fails 
to apply what it has seen in a similar context. Similarly, the 
image acquisition parameters or the quality of the X-ray may 
be different from what the AI has seen during its training.

Table 6   AI performance for long bone fracture detection depending 
on fracture location, including humerus, radius, ulna, femur, tibia, 
fibula, metacarpals, metatarsals, and phalanges

CI confidence interval
* Number of fractures is too small for a statistically meaningful con-
clusion

Number of 
fractures

Sensitivity per fracture 
(%) [95% CI]

Diaphysis 32 96.9% [83.8, 99.9]
Metaphysis 87 93.1% [85.6, 97.4]
Epiphysis 24 87.5% [67.6, 97.3]
Physis (Salter Harris II) 21 100.0% [83.9, 100.0]
Physis (Salter Harris IV) 3 100.0% [29.2, 100.0]*

Table 7   AI performance for fracture detection depending on difficulty

CI confidence interval

Number of fractures Sensitivity per 
fracture (%) [95% 
CI]

Obvious 125 95.2% [89.9, 98.2]
Non-obvious 48 85.4% [72.2, 93.9]
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Fig. 4   a False negative case, 
in which AI failed to detect a 
nondisplaced fracture of the 
third metatarsal proximal shaft 
(arrow) which was detected 
by experienced radiologists. 
b False positive case in which 
AI erroneously annotated the 
apophysis of the 5th metatarsal 
base as a fracture, highlighted 
by a box with the white dashed 
line. c True positive case show-
ing a nondisplaced transverse 
fracture of the proximal fibular 
shaft, highlighted by a white 
box. d True positive case show-
ing an avulsion fracture of the 
tibial epiphysis at the articu-
lar surface, highlighted by a 
white box. e True positive case 
showing a fracture of the distal 
radial metaphysis and the physis 
(Salter-Harris type II fracture), 
highlighted by a white box
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With respect to prior pediatric-dedicated studies of elbow 
fracture detection using AI, England and colleagues reported 
an excellent diagnostic performance of their deep convolu-
tional network (DCNN) model with ROC AUC of 0.985 for 
the validation set and 0.943 for the independent test set [8]. 
However, radiographically evident fractures were excluded 
from their study sample and their AI only detected the pres-
ence of elbow joint effusion on lateral radiographs (which is 
a sign of radiographically occult fractures, particularly the 
supracondylar fractures of the humerus in pediatric patients), 
and not the fracture itself. Rayan and colleagues used AI 
to detect various types of fractures in the elbow region, 
including radiographically occult fractures as indicated by 
the presence of elbow joint effusion, reporting an overall 
ROC AUC of 0.9465 [9]. Choi and colleagues applied AI for 
automated detection of pediatric supracondylar fractures on 
radiographs, reporting ROC AUC of at least 0.976 for their 
validation and test sets [10]. Specifically for elbow and arm 
fractures, our AI showed excellent diagnostic performance 
with ROC AUC of 0.99 and fracture sensitivity of 100%. 
Direct comparison of our study with these three studies is 
difficult, as the study design and outcome measures are nota-
bly different. However, our AI identifies fractures and not 
just elbow effusion, and therefore may be more applicable 
to other bones and joints as well as different fracture types, 
making it much more useful and clinically helpful.

There are several limitations to our study. First, we only 
assessed the standalone performance of the AI software and 
did not evaluate how the AI can assist human readers. In real-
world clinical practice, BoneView™ is used primarily to help 
human readers (such as but not limited to, radiologists and 
emergency medicine physicians) and not as a standalone diag-
nostic tool. Although previous studies have already shown that 
BoneView™ could help improve human readers’ diagnostic 
performance and also improved diagnostic efficiency [13, 18], 
those studies did not include pediatric patients. Second, our 
study was retrospective in nature and AI interpreted the radio-
graphs without any input of clinical information. In real-life 
scenarios, clinicians typically interpret the radiographs with 
the knowledge of clinical history and physical examination 
findings, and thus our study does not reflect the real situation. 
Third, in our study sample, positive fracture exams are poten-
tially over-represented with the artificially created prevalence 
of fractures set at 50% in each anatomical location. These 
include relatively uncommon fracture locations in pediatric 
patients, and thus it is difficult to generalize our results to real-
life scenarios in the pediatric emergency room. However, one 
cohort study showed actual positive fracture rates (detected in 
radiographic exams performed in the Emergency Room) of 
70.5% in the clavicle, 54.5% in the forearm, 53% in the wrist, 
and 41.5% in the elbow of pediatric emergency patients, and 
thus the artificial prevalence of 50% may not be too farfetched 
for certain upper extremity fractures [27]. Lastly, our study 

only included acute fractures, although in real life non-acute 
fractures are also seen in imaging studies. We chose this study 
design to assess our deep learning algorithm’s capability to tri-
age patients who require urgent treatment (i.e., acute fractures) 
in the emergency room. Since our AI-based tool can immedi-
ately notify clinicians which patients have acute fractures as 
soon as radiographs are acquired, those patients can be given 
priorities to be treated without delay while waiting for an offi-
cial radiologist’s report. Non-acute fractures were not included 
in our analysis because they do not require urgent action and 
clinicians do not need to be alerted immediately for the pres-
ence of such fractures. All in all, considering all of the above 
limitations, our results may not be immediately applicable to 
real-world clinical practice.

Conclusion

The BoneView™ deep learning algorithm provides high over-
all diagnostic performance for most types of fracture detection 
(especially in upper extremities) in pediatric patients.
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