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Traumatic skeletal injuries are a leading source of consul-
tation in emergency departments, with an annual inci-

dence reported to be as high as 1.3% in the United States 
(1) and 0.32% in China (2). Radiography is the first-line 
imaging modality for the diagnosis of these lesions and the 
most used imaging modality worldwide (3–5). The reading 
of trauma radiographs is a demanding task that requires 
radiologic expertise, and there is a lack of radiologists (6). 
Consequently, emergency physicians are required to make 
patient treatment decisions before the availability of a ra-
diologist’s report, with a risk of interpretation error (7–9). 
Missed fractures, a preventable cause of morbidity (10), 
represent up to 80% of emergency department diagnostic 

errors (11). In American medical-legal claims, extremity 
fractures are the second most frequently missed diagnosis 
leading to a claim, after breast cancer (12). Assisting physi-
cians in detecting and localizing fractures on plain radio-
graphs could therefore reduce error rates.

Computer-aided detection software has been devel-
oped for more than 20 years to provide decision support 
to radiologists, especially for screening breast cancer on 
mammograms (13) and lung nodules on CT scans (14). 
However, computer-aided detection systems have a high 
false-positive rate, which has limited their acceptance 
(13). Similar technologies have been unsuccessfully in-
vestigated for fracture detection, potentially because of 

Background:  The interpretation of radiographs suffers from an ever-increasing workload in emergency and radiology departments, 
while missed fractures represent up to 80% of diagnostic errors in the emergency department.

Purpose:  To assess the performance of an artificial intelligence (AI) system designed to aid radiologists and emergency physicians in 
the detection and localization of appendicular skeletal fractures.

Materials and Methods:  The AI system was previously trained on 60 170 radiographs obtained in patients with trauma. The radio-
graphs were randomly split into 70% training, 10% validation, and 20% test sets. Between 2016 and 2018, 600 adult patients in 
whom multiview radiographs had been obtained after a recent trauma, with or without one or more fractures of shoulder, arm, 
hand, pelvis, leg, and foot, were retrospectively included from 17 French medical centers. Radiographs with quality precluding hu-
man interpretation or containing only obvious fractures were excluded. Six radiologists and six emergency physicians were asked 
to detect and localize fractures with (n = 300) and fractures without (n = 300) the aid of software highlighting boxes around AI-
detected fractures. Aided and unaided sensitivity, specificity, and reading times were compared by means of paired Student t tests 
after averaging of performances of each reader.

Results:  A total of 600 patients (mean age 6 standard deviation, 57 years 6 22; 358 women) were included. The AI aid improved 
the sensitivity of physicians by 8.7% (95% CI: 3.1, 14.2; P = .003 for superiority) and the specificity by 4.1% (95% CI: 0.5, 7.7; P < 
.001 for noninferiority) and reduced the average number of false-positive fractures per patient by 41.9% (95% CI: 12.8, 61.3; P = 
.02) in patients without fractures and the mean reading time by 15.0% (95% CI: 230.4, 3.8; P = .12). Finally, stand-alone perfor-
mance of a newer release of the AI system was greater than that of all unaided readers, including skeletal expert radiologists, with an 
area under the receiver operating characteristic curve of 0.94 (95% CI: 0.92, 0.96).

Conclusion:  The artificial intelligence aid provided a gain of sensitivity (8.7% increase) and specificity (4.1% increase) without loss of 
reading speed.
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In this study, we appraised the performance of a new arti-
ficial intelligence (AI) system trained to detect and localize all 
limb and pelvis fractures. By using a data set of posttraumatic 
radiographs from 17 centers, we compared the detection per-
formance and reading time, with and without AI aid, in a clini-
cally relevant setup of emergency physicians and radiologists of 
various levels of experience. We also assessed the stand-alone AI 
system performance.

Materials and Methods
This study was funded by Gleamer, which developed the AI 
and software and built the study sample and design. Data 
analysis and manuscript writing were performed by authors 
not affiliated with Gleamer (A.G., a biostatistician with 4 
years of experience, and L.G., a radiologist with 7 years of 
experience). A.D., C.A., N.E.R., N.C., Z.Z., N.N, E.L., and 
A.P. are or were employees of Gleamer. A. Feydy is a paid con-
sultant for Gleamer. A. Felter and L.L. were paid by Gleamer 
to participate in the study as readers or experts. L.D., A.G., 
and J.L. have no conflicts of interest to declare.

This retrospective study was approved by the institutional re-
view board, which waived specific patient informed consent. We 
followed the Standards for Reporting of Diagnostic Accuracy 
Studies guidelines and report key considerations of radiology AI 
studies (30) in Table E1 (online).

Model Building and Validation
We gathered a development data set of 60 170 radiographs in pa-
tients with trauma from 22 French public hospitals and private 
radiology departments from January 2011 to May 2019; this 
data set was randomly split into 70% training, 10% validation, 

the wider variety of morphologic aspects and image patterns in-
volved (15,16). Only the recent advent of deep learning, which 
has helped reach superhuman performances in a wide variety of 
image-related tasks (17,18), has allowed the emergence of sys-
tems capable of tackling this challenge. Several recent studies 
have assessed the performance of algorithms in the detection of 
bone fractures, with encouraging results (19–29). However, all 
of these approaches have limitations that jeopardize their appli-
cability in a practical context. For instance, to our knowledge, no 
algorithms have been proposed to analyze all body parts simul-
taneously or to detect multiple fractures in a single radiograph, 
which are frequently encountered in every clinical practice.

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve

Summary
The artificial intelligence aid improved the sensitivity and specificity of 
radiologists and emergency physicians in the localization of appendicu-
lar fractures on radiographs, with no additional reading time.

Key Results
	N The artificial intelligence (AI) aid, which highlighted potential 

fractures on full-resolution radiographs, improved the sensitivity 
(8.7% increase, P = .006) and specificity (4.1% increase, P = .03) 
of emergency doctors and radiologists in the diagnosis of appen-
dicular fractures.

	N The stand-alone area under the receiver operating characteristic 
curve, requiring that the AI system detect the precise locations of 
all fractures on an examination, was .94 with a newer release of the 
AI system.

Figure 1:  Flowchart of study.



Duron et al

Radiology: Volume 000: Number 0—Month 2021  n  radiology.rsna.org	 3

and 20% internal test sets. A deep convolutional neural 
network based on the “Detectron 2” (31) framework was 
engineered, trained, optimized, and validated to detect and 
localize fractures on native resolution digital radiographs. 
The AI system was integrated into radiology software as a di-
agnostic aid, highlighting each region of interest with a box 
and providing a confidence score regarding the existence of 
a fracture in the region of interest (Appendix E1 [online]).

Inclusion and Exclusion Criteria
The study sample, an external test data set, was retrospec-
tively built from examinations (sets of radiographs taken 
at the same time in a patient) completed between January 
2016 and December 2017 in 17 other French medical cen-
ters with use of digital radiography systems from three man-
ufacturers found in the development data set (Philips Medi-
cal Systems, PrimaX, ATS) and three other manufacturers 
(IDETEC Digital Medical Imaging, FujiFilm, Siemens). No 
study sample radiograph was used in the development data 
set.

Inclusion criteria were age 18 years or older and at least 
one digital plain radiograph of an appendicular body part 
(shoulder, arm, hand, pelvis, leg, foot) obtained after a re-
cent trauma, with or without fracture.

Exclusion criteria were (a) poor radiographic quality pre-
cluding human interpretation, (b) examinations showing 
only obvious fractures (displaced, dislocated, or multiple 
fragments) according to ground-truth radiologists, and (c) 
quota of 50 patients reached for that body part and fracture 
status (fractured vs unfractured).

Stratified randomized sampling was used to include 50 
patients with and 50 patients without fracture for each lo-
cation (Appendix E1 [online]), leading to 2441 radiographs 
in 600 examinations of 600 patients (Figs 1, 2). The sample 
was split once into two 300-patient subsets with stratified 
randomization so that the resulting subsets were similar in 
terms of median age, female-to-male ratio, body part, and 
fracture prevalence.

Ground Truth
Two skeletal imaging radiologists (L.L. and N.E.R., with 9 
and 10 years of experience, respectively) independently drew 
bounding boxes around each bone fracture they detected in 
each view of the 600 examinations by using dedicated software, 
without AI aid. The ground truth of a fracture was defined as 
the union of the experts’ bounding boxes when their bounding 
boxes had an intersection over union above 25%. Disagree-
ments were resolved (149 examinations) by majority consensus 
with a third skeletal imaging radiologist (A. Feydy, with 28 
years of experience).

Readers and Readings
Twelve independent readers (six radiologists and six emergency 
physicians) of various levels of experience (including residents 
and experts) working in different French radiology centers were 
enrolled from June to August 2019 and trained to the detection 
task with AI aid on a small independent sample of cases. Read-
ers were blinded to clinical data, and readings were performed 
on dedicated medical workstations displaying de-identified loss-
less radiographs, without any time constraints. Reading time of 

Figure 2:  Diagram depicts study design. Each step is illustrated in successive boxes, including study sample constitution, 
establishment of ground truth by three experts in skeletal imaging, reading tasks with and without artificial intelligence (AI) 
aid, and main lines of data analysis. IOU = intersection over union.
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each examination was automatically recorded. Readers localized 
fractures by pinpointing them on at least one radiograph of a 
displayed patient case. Readers and the two 300-patient subsets 
were randomized so that half of the readers interpreted subset 1 
with AI aid and subset 2 without AI aid, while the other half in-
terpreted subset 1 without AI aid and subset 2 with AI aid, and 
an even distribution of specialty and experience was respected 
(Table E2 [online]). Readers were blinded to one another and to 
expert’s judgments.

Metrics

Patient-wise classification metrics.—Patient-wise sensitivity was 
defined as the proportion of examinations in which all actual 
fractures were discovered and indicated (each one, on at least one 
radiograph) among examinations having at least one fracture, 
even if some incorrect spots (false-positive findings) had been 
added by the reader. Patient-wise specificity was defined as the 
proportion of examinations in which no fracture was spotted by 
the reader among examinations having no fracture.

Fracture-wise object detection metrics.—Patient-wise defini-
tions ignore the partial detection of multiple fractures and false-
positive fractures when all real fractures have been indicated. 
To overcome these limitations, the fracture-wise sensitivity was 
defined as the proportion of fractures correctly detected among 
all fractures, on at least one radiograph with observations being 
fractures rather than examinations. The average number of false-
positive fractures per patient was defined as the average number 
of spots per examination placed at regions where there was no 
fracture.

Performance of Readers
The two co-primary outcomes were patient-wise sensitivity and 
patient-wise specificity. The primary analysis had to demonstrate 
both the superiority of the average patient-wise sensitivity with 
aid to that without aid and the noninferiority of the average 
patient-wise specificity with aid to that without aid with a non-
inferiority margin of 23%.

Subgroup Analyses
Readers results were also analyzed according to reader’s specialty, 
fracture location, fracture severity (as defined in Appendix E1 
[online]), and number of fractures per patient.

Stand-alone AI Performance
The stand-alone algorithm performance was assessed by using 
receiver operating characteristic and free-response receiver op-
erating characteristic curves based on the same definitions of 
patient-wise and fracture-wise diagnosis performances, respec-
tively. To be consistent with the evaluation of human readers, 
who used a dot to mark the area of fracture, we considered the 
center of the region of interest as the location of the AI-indicated 
fractures. During the study a new version of the AI system was 
developed owing to better annotations of training data, but be-
cause the AI system used in the diagnostic aid software was un-

changed, performances of AI-aided readers were based on the 
older AI system. Stand-alone performances of both the older and 
the newer versions of the AI system were assessed by using the 
study sample. A post hoc sensitivity analysis considering the di-
agnosis of each patient as binary (fracture[s] vs no fracture) was 
also performed.

Statistical Analysis
Statistical analyses were performed by A.G. using statistical soft-
ware (R, version 4.0.2; R Foundation for Statistical Computing).

Primary analysis.—For each reader, the mean patient-wise sen-
sitivity and specificity with and without aid were computed and 
then compared between aided and unaided readings by means 
of paired t tests with 12 pairs of observations (one pair for each 
reader). The success of primary analysis required both the su-
periority of sensitivity and noninferiority of specificity with a 
noninferiority margin of 23%, both at 2.5% one-sided signifi-
cance threshold. All other tests were two sided at 5% significance 
threshold.

Secondary analyses.—Patient-wise sensitivity and specificity, 
fracture-wise sensitivity, average number of false-positive frac-
tures per patient, and reading time were averaged for each reader, 
with or without aid, then compared by means of appropriate 
paired or two-sample t tests or general linear models. Receiver 
operating characteristic and free-response receiver operating 
characteristic curves were drawn by using the custom metrics 
(patient-wise sensitivity and specificity, fracture-wise sensitivity, 
and average number of false-positive fractures per patient). For 
comparison with the literature, the usual binary definition of 
fracture (yes or no) was used in a sensitivity analysis. Statistical 
analyses, including subgroup analyses, are further described in 
Appendix E1 (online).

Results

Patient Characteristics
During the screening, 419 examinations that contained only ob-
vious fractures and 11 with poor radiographic quality precluding 
human interpretation were excluded (Fig 1). The mean age of 
the 600 included patients (6standard deviation) was 57 years 6 
22 (range, 18–100 years); 358 of the 600 patients (60%) were 
women. Women were older than men (mean age, 62 years vs 49 
years, respectively; P , .001), and 229 of the 358 women (64%) 
were aged 55 years or older. Patients with at least one fracture 
were older than those without fractures (mean age, 62 years vs 
51 years, respectively; P , .001). A summary of demographic 
characteristics according to location and fracture status is given 
in Table 1. Fracture sites are listed in Table E3 (online).

Performance of Readers
The use of AI to read radiographic examinations improved the 
patient-wise sensitivity from 70.8% to 79.4% (8.7% increase; 
95% CI: 3.1, 14.2; P = .003 for superiority) and patient-wise 
specificity from 89.5% to 93.6% (4.1% increase; 95% CI: 0.5, 
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7.7; P < . 001 for noninferiority). The mean average number of 
false-positive fractures per patient in patients with no fractures 
was reduced from 0.113 to 0.066 (41.9% decrease; 95% CI: 
12.8, 61.3; P = .02). The mean reading time was reduced from 
67.0 to 57.0 seconds (10.0-second decrease; 95% CI: 23.0, 
23.1; P = .12) with AI aid. AI aid improved the fracture-wise 
sensitivity (absolute proportion difference) by 7.5% (95% CI: 
2.8, 12.2; P = .005). Results of sensitivity analyses, shown in 
Appendix E2 (online), were consistent with the primary analysis. 
Table 2 and Figure 3 show changes in metrics with AI aid. Table 
E4 (online) shows raw reader performances.

Subgroup Analyses
Tables 3 and E5 (online) and Appendix E1 (online) show re-
sults of subgroup analyses. A gain in patient-wise sensitivity was 
observed with AI aid for all body parts; however, a statistically 
significant difference was seen only for the hand and foot.

The sensitivity of emergency physicians improved from 
61.3% to 74.3% (13.0% increase, P = .03) with AI, and the 
sensitivity of radiologists improved from 80.2% to 84.6% (4.3% 
increase, P = .03). The difference in sensitivity gain between 
emergency physicians (13.0% increase) and radiologists (4.3% 
increase) was estimated at 8.7% (95% CI: 21.4, 18.7; P = .08). 

After adjustment for the unaided sensitivity (61.3% on average 
for emergency physicians vs 80.2% for radiologists), this differ-
ence in sensitivity gain was reduced to 25.6% (95% CI: 216.7, 
5.4; P = .28) for emergency physicians versus radiologists.

The patient-wise sensitivity of aided emergency physicians 
(74.3%) was 5.9% (95% CI: 22.6, 14.4; P = .15) lower than 
that of unaided physicians (80.2%), whereas the patient-wise 
specificity of aided emergency physicians (96.6%) was higher 
than that of unaided radiologists (88.4%) (absolute difference, 
8.1%; 95% CI: 1.1, 15.2; P = .03). Overall, the absolute dif-
ference of Youden index (patient-wise sensitivity 1 patient-wise 
specificity 2 1) between aided emergency physicians and 
unaided radiologists was estimated at 12.2% (95% CI: 
25.1, 9.6; P = .51).

The difference in average fracture-wise sensitivity gains be-
tween the 99 patients with severe fractures (absolute gain, 6.0%; 
95% CI: 20.3, 12.4; P = .06) and the 201 patients with non-
severe fractures (absolute gain, 9.9%; 95% CI: 4.3, 15.5; P =  
.003) was estimated at 23.8% (95% CI: 28.0, 0.3; P = .07). 
Gains in fracture-wise sensitivity were not significantly differ-
ent (absolute difference, 23.1%; 95% CI: 28.2, 2.1; P = .22) 
between the 59 patients with multiple fractures (absolute dif-
ference, 5.5%; 95% CI: 1.3, 9.7; P = .01) and the 241 patients 

Table 1: Summary of Demographic Characteristics according to Examination Location and Presence of Fracture

Location

Patients with Fracture Patients without Fracture

Age (y)* No. of Women Age (y)* No. of Women
Total 62 6 22 192/300 (64) 51 6 21 166/300 (55)
Shoulder 68 6 19 26/42 (62) 55 6 19 18/37 (49)
Arm 51 6 20 26/37 (70) 48 6 15 19/45 (42)
Hand 51 6 25 23/44 (52) 40 6 17 28/50 (56)
Pelvis 82 6 10 34/45 (76) 66 6 24 27/46 (59)
Leg 60 6 20 30/46 (65) 52 6 18 22/44 (50)
Foot 59 6 17 27/44 (61) 47 6 20 27/40 (68)
Multiple locations 59 6 24 26/42 (62) 53 6 21 25/38 (66)

Note.—Unless otherwise specified, data are numbers of patients with percentages in parentheses.
* Numbers are means 6 standard deviations.

Table 2: Diagnostic Performances of Unaided and Aided Readings

Parameter
Unaided 
(n = 12)*

Aided 
(n = 12)*

Absolute Difference 
(n = 12)†

Relative Difference (%) 
(n = 12)†

SEPW (%) 70.8 6 12.5 79.4 6 7.4 18.7 (3.1, 14.2) [.003]‡ 12.2 (4.0, 21.2)
SPEPW (%) 89.5 6 6.5 93.6 6 4.6 14.1 (0.5, 7.7) [<.001]‡ 4.6 (0.7, 8.6)
SEFW (%) 73.7 6 11.1 81.2 6 6.5 17.5 (2.8, 12.2) [.005] 10.2 (3.5, 17.2)
PP-FPFW for patients without fracture 0.113 6 0.069 0.066 6 0.048 20.047 (20.086, 20.009) [.02] 241.9 (261.3, 212.8)
PP-FPFW for patients with fracture 0.082 6 0.055 0.045 6 0.028 20.037 (20.073, 0.000) [.05] 244.9 (267.0, 27.9)
Mean reading time (sec) 67.0 6 26.2 57.0 6 24.8 210.0 (223.1, 3.0) [.12] 215.0 (230.4, 3.8)

Note.—PP-FPFW = average number of false-positive fractures per patient, SEFW = fracture-wise sensitivity, SEPW = patient-wise sensitivity, 
SPEPW = patient-wise specificity,
* Data are means 6 standard deviations.
† Numbers in parentheses are 95% CIs, and numbers in brackets are P values.
‡ P values are one-sided for primary analysis with superiority margin of 10% for SEPW and noninferiority margin of 23% for SPEPW.
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Table 3: Predictive Performances of the 12 Readers with and without AI Aid according to Body Part

Body Part and Parameter Unaided* Aided* Absolute Difference†

Shoulder
  SEPW (%) 75.3 6 17.2 80.9 6 10.9 5.5 (22.3, 13.3) [.15]
  SPEPW (%) 97.6 6 3.0 92.8 6 9.7 24.9 (210.0, 0.3) [.06]
  YPW (%) 73.0 6 16.6 73.7 6 10.0 0.7 (210.0, 11.3) [.89]
  SEFW (%) 77.0 6 16.2 82.1 6 10.6 5.0 (22.3, 12.4) [.16]
  PP-FPFW for patients without 

fracture
0.029 6 0.040 0.072 6 0.097 0.043 (20.005, 0.092) [.08]

  PP-FPFW for patients with fracture 0.046 6 0.061 0.054 6 0.077 0.008 (20.059, 0.074) [.81]
  Mean reading time (sec) 52.7 6 20.1 54.9 6 28.5 2.2 (215.1, 19.5) [.78]
Arm
  SEPW (%) 83.2 6 16.9 86.7 6 9.7 3.5 (29.0, 16.1]) [.55]
  SPEPW (%) 93.8 6 5.8 97.0 6 3.5 3.2 (0.2, 6.2) [.04]
  YPW (%) 76.9 6 18.1 83.7 6 8.1 6.8 (27.0, 20.5) [.30]
  SEFW (%) 83.5 6 16.5 86.9 6 9.8 3.4 (29.2, 15.9) [.56]
  PP-FPFW for patients without 

fracture
0.062 6 0.058 0.030 6 0.035 20.032 (20.062, 20.002) [.04]

  PP-FPFW for patients with fracture 0.055 6 0.063 0.042 6 0.075 20.013 (20.081, 0.055) [.67]
  Mean reading time (sec) 49.3 6 19.5 43.3 6 20.7 26.0 (214.9, 2.9) [.17]
Hand
  SEPW (%) 59.6 6 20.5 80.2 6 11.4 20.5 (6.3, 34.8) [.009]
  SPEPW (%) 84.7 6 11.0 91.0 6 6.4 6.3 (21.0, 13.6) [.08]
  YPW (%) 44.3 6 26.1 71.2 6 8.7 26.9 (7.8, 46.0) [.01]
  SEFW (%) 66.4 6 17.0 80.9 6 9.4 14.6 (2.6, 26.5) [.02]
  PP-FPFW for patients without 

fracture
0.160 6 0.119 0.090 6 0.064 20.070 (20.150, 0.010) [.08]

Table 3 (continues)

Figure 3:  Receiver operating characteristic and free-response receiver operating characteristic curves show artificial intelligence (AI) performance and unaided and 
aided reader performance. (a) Receiver operating characteristic curves and (b) free-response receiver operating characteristic curves show the stand-alone performance 
of the older (solid line) and newer (dashed line) versions of the algorithm and the performances of radiologists with (ends of arrows) and without (circles) the aid of the 
AI system. A high-sensitivity threshold and a high-specificity threshold (detailed in Appendix E1 [online]) are used by the AI aid to respectively highlight possible fractures 
(DOUBT FRACT) and definite fractures (FRACT) as shown in Figures 4 and 5.  Readers are grouped according to specialty. AI aid of readers was based on the older 
version of the algorithm, as the newer version was developed during the study. All curves are computed for the study sample. AUC = area under the receiver operating 
characteristic curve, MSK = musculoskeletal specialist, PP-FPFW = average number of false-positive fractures per patient, SEFW = fracture-wise sensitivity, SEPW = patient-wise 
sensitivity, SPEPW = patient-wise specificity
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with a single fracture (absolute difference, 8.6%; 95% CI: 2.8, 
14.4; P = .008).

Examples of fractures are illustrated in Figures 4 and 5.

Stand-alone AI Performance
The stand-alone area under the receiver operating characteristic 
curve (AUC) of the AI system study version was .91 (95% CI: 
.89, .94; P , .001). A newer version of the AI system, developed 
during the study but not included in the software, outperformed 

every unaided reader, showing an AUC of .94 (95% CI: .92, .96; 
P , .001). In a post hoc sensitivity analysis with a binary diag-
nosis for each patient (fracture vs no fracture), the AUCs of the 
older and newer AI system versions were, respectively, .95 (95% 
CI: .93, .97; P , .001) and .97 (95% CI: .96, .98; P , .001).

Discussion
Fractures represent up to 80% of emergency department diagnos-
tic errors. Assisting physicians in detecting and localizing fractures 

Body Part and Parameter Unaided* Aided* Absolute Difference†

  PP-FPFW for patients with fracture 0.118 6 0.105 0.022 6 0.03 20.095 (20.164, 20.027) [.01]
  Mean reading time (sec) 83.2 6 37.6 61.6 6 29.5 221.7 (238.4, 24.9) [.02]
Pelvis
  SEPW (%) 64.8 6 12.4 69.8 6 7.3 5.0 (22.6, 12.6) [.18]
  SPEPW (%) 86.6 6 9.1 91.8 6 8.1 5.1 (23.3, 13.6) [.21]
  YPW (%) 51.5 6 12.7 61.6 6 9.5 10.1 (22.5, 22.7) [.11]
  SEFW (%) 70.0 6 10.8 73.8 6 6.5 3.7 (21.6, 9.1) [.15]
  PP-FPFW for patients without 

fracture
0.158 6 0.114 0.082 6 0.081 20.076 (20.174, 0.022) [.12]

  PP-FPFW for patients with fracture 0.091 6 0.092 0.077 6 0.084 20.013 (20.082, 0.055) [.67]
  Mean reading time (sec) 59.1 6 21.1 54.2 6 25.2 24.9 (221.3, 11.5) [.53]
Leg
  SEPW (%) 76.4 6 11.8 80.1 6 13.2 3.6 (25.3, 12.5) [.39]
  SPEPW (%) 88.6 6 10.5 96.2 6 4.3 7.6 (0.9, 14.2) [.03]
  YPW (%) 65.1 6 13.9 76.3 6 12.9 11.2 (1.5, 20.9) [.03]
  SEFW (%) 76.3 6 11.8 80.4 6 13.5 4.1 (25.3, 13.5) [.36]
  PP-FPFW for patients without 

fracture
0.117 6 0.115 0.042 6 0.049 20.076 (20.150, 20.002) [.046]

  PP-FPFW for patients with fracture 0.051 6 0.052 0.011 6 0.027 20.040 (20.080, 0.000) [.05]
  Mean reading time (sec) 57.0 6 24.3 48.5 6 19.4 28.5 (221.5, 4.6) [.18]
Foot
  SEPW (%) 71.8 6 13.6 86.9 6 8.3 15.1 (7.5, 22.8) [.001]
  SPEPW (%) 88.0 6 9.9 92.9 6 5.8 4.9 (0.2, 9.5) [.04]
  YPW (%) 59.8 6 13.3 79.8 6 7.8 20.0 (11.3, 28.7) [<.001]
  SEFW (%) 78.1 6 10.8 90.0 6 6.0 12.0 (6.2, 17.7) [ <.001]
  PP-FPFW for patients without 

fracture
0.128 6 0.112 0.071 6 0.058 20.057 (20.110, 20.005) [.03]

  PP-FPFW for patients with fracture 0.102 6 0.108 0.049 6 0.036 20.053 (20.108, 0.003) [.06]
  Mean reading time (sec) 76.3 6 30.1 60.6 6 28.3 215.8 (228.8, 22.8) [.02]
Multiple locations
  SEPW (%) 65.6 6 13.4 72.4 6 10.7 6.8 (22.5, 16.1) [.14]
  SPEPW (%) 88.2 6 14.7 94.5 6 6.7 6.3 (20.3, 12.9) [.06]
  YPW (%) 53.9 6 16.8 67.0 6 10.3 13.1 (0.9, 25.3) [.04]
  SEFW (%) 69.2 6 10.3 77.3 6 9.7 8.0 (20.2, 16.2) [.05]
  PP-FPFW for patients without 

fracture
0.123 6 0.147 0.062 6 0.080 20.061 (20.120, 20.002) [.04]

  PP-FPFW for patients with fracture 0.112 6 0.118 0.066 6 0.054 20.047 (20.140, 0.047) [.30]
  Mean reading time (sec) 90.3 6 36.8 77.0 6 31.6 213.3 (229.7, 3.1) [.10]

Note.—Performance was compared with ground truth. AI = artificial intelligence, PP-FPFW = average number of false-positive fractures per 
patient, SEFW = fracture-wise sensitivity, SEPW = patient-wise sensitivity, SPEPW = patient-wise specificity, YPW = Youden index by patient.
* Unless otherwise specified, data are means 6 standard deviations.
† Absolute mean difference of performance attributed to AI aid, estimated with the Student paired t test in the 12 readers (12 observations). 
No multiple testing procedures were applied. Numbers in parentheses are the 95% CIs. Numbers in brackets are P values.

Table 3 (continued): Predictive Performances of the 12 Readers with and without AI Aid according to Body Part
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on plain radiographs could reduce error rates. In this study, we 
assessed the effect of an artificial intelligence (AI) aid on the 
diagnostic performance of six radiologists and six emergency 
physicians in detection of appendicular fractures on trauma 
radiographs. The AI aid improved the sensitivity of physicians 
from 70.8% to 79.4% (8.7% increase, P = .003 for superiority) 
and specificity from 89.5% to 93.6% (4.1% increase, P < .001 
for noninferiority) and reduced the number of false-positive 
fractures per patient from 0.113 to 0.066 (41.9% decrease, P 
= .02), with no additional reading time (from 67.0 to 57.0 sec-
onds, P = .12).

To our knowledge, this was the first study to assess the perfor-
mance of AI-aided health professionals in seeking bone fractures 
on all appendicular radiographs. Published studies that have 
investigated deep learning approaches to bone fracture detec-
tion focused on single body parts, such as hips (26–29), wrists 
(19–21,25), shoulders (22), or ankles (23). Moreover, Blüthgen 
et al (21) validated their results on a monocentric external test set 
and other studies used internal test sets, whereas we gathered an 
external multicentric study sample including image acquisition 
systems not present in the development set. Unlike our study, all 
published studies considered the evaluation of fracture detection 

Figure 4:  Radiographs show examples of multiple and/or severe fractures as well as human and artificial intelligence 
(AI) false-negative findings. AI system boxes are displayed as FRACT (definite fracture, confidence level >90%) and DOUBT 
FRACT (possible fracture, confidence level >50%) with confidence level, as explained in Materials and Methods. (a) Im-
age shows right distal radius fracture combined with fracture of distal phalange of thumb. The latter was missed by one of six 
unaided readers. (b) Image shows fractures of scaphoid (box, found by AI but missed by five of six unaided readers) and tri-
quetrum (arrow, missed by AI and five of six unaided readers) during perilunate dislocation. (c) Image shows fractures of right 
femoral neck and left superior and inferior ramus of pubis. The two latter fractures were missed by five of six unaided readers.
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as a binary classification task, precluding the identification of 
multiple fractures on a single image, although it is one of the 
first sources of interpretation errors, known as satisfaction of 
search (32). Although most studies focused on the stand-alone 
AI performance, Lindsey et al (19) showed that the use of an 
AI aid could improve physician assistants’ and emergency physi-
cians’ readings of wrist trauma radiographs. Moreover, whereas 
most previous studies used cropped or downsized images, our AI 
system handles full-resolution images with multiple radiographs 
per patient and can therefore be integrated into a viewer used 
in routine practice. Most published studies reported stand-alone 
algorithm AUCs higher than .90 or even .95, whereas we found 
AUCs of .94 for the stand-alone performance of our newer AI 
system when anatomic location was considered and .97 with use 
of a binary diagnosis without anatomic location, as did previous 
studies. We tried to obtain a setup that was as close as possible 
to real-word clinical conditions (whole appendicular body, mul-
ticentric external data set), with a strict definition of classifica-
tion metrics, but we excluded obvious fractures from the study 
sample. Although excluding obvious fractures may have led to 
an underestimation of the overall diagnostic performance of un-
aided readers, it allowed us to show that an AI aid is helpful even 
in difficult but more clinically relevant conditions. Regardless, 
in our study, the stand-alone algorithm showed better perfor-
mance than almost all readers, including radiologists, which has, 
to date, never been published.

Our study had several limitations. First, readers and the AI 
system were assessed on their ability to make decisions based 
on image analysis alone, without knowledge about the findings 
from the patients’ physical examination or their medical history, 
creating a context bias (33). Clinical data can be crucial in mak-
ing decisions (27,34); however, in our experience radiologists 

often lack relevant clinical data. Second, a Hawthorne effect may 
have affected the performances of readers, that is, a modifica-
tion of their behavior in response to their awareness of being 
observed for the research project, leading, for instance, to a more 
thorough reading than in clinical practice. Similarly, cognitive 
biases related to the emergency setting could not be replicated 
in a retrospective study (35). Third, because examinations con-
taining only obvious fractures were excluded, the sensitivity 
of unaided readers was probably underestimated. Fourth, the 
stratification of fractures, leading to an artificial 50% prevalence, 
made it impossible to calculate negative and positive predictive 
values and amplified the context bias. Fifth, a design in which all 
readers would have read the same images with and without AI 
might have yielded a higher statistical power. However, we chose 
a design that avoided reader-order bias (33), which is closer to a 
real-world setting.

In conclusion, we showed that a deep learning algorithm 
aided emergency physicians and radiologists in improving their 
diagnostic performance and boosting their time efficiency in the 
localization of all appendicular bone fractures on plain radio-
graphs. The algorithm improved as updates were made, which 
bodes well for helping physicians cope with the increasing work-
load more effectively, and an evaluation in future prospective 
studies will be needed.

Author contributions: Guarantors of integrity of entire study, L.D., A.D., C.A., 
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tion, all authors; manuscript drafting or manuscript revision for important intel-
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Figure 5:  Radiographs show examples of false-positive findings with artificial intelligence (AI) system. AI system boxes are 
displayed as FRACT (definite fracture, confidence level >90%) and DOUBT FRACT (possible fracture, confidence level >50%) with 
confidence level, as explained in Materials and Methods. (a) Image shows left proximal second metacarpus healing fracture. The 
AI system indicated that it was a fracture; however, it is not a recent fracture and so was considered a false-positive finding. (b) Im-
age shows true-positive AI finding of right femoral neck fracture (box on left of figure) and false-positive AI finding of fracture in pubic 
ramus (box on right of figure), possibly due to superposition of soft tissues
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