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Fracture detection using radiography is one of the most 
common tasks in patients with high- or low-energy 

trauma in various clinical settings, including the emer-
gency department, urgent care, and outpatient clinics 
such as orthopedics, rheumatology, and family medicine. 
Missed fractures on radiographs are one of the most com-
mon causes of diagnostic discrepancies between initial 
interpretations by nonradiologists or radiology residents 
and the final read by board-certified radiologists, lead-
ing to preventable harm or delay in care to the patient 
(1–3). Fracture interpretation errors can represent up to 
24% of harmful diagnostic errors seen in the emergency 

department (2). Furthermore, inconsistencies in radio-
graphic diagnosis of fractures are more common during 
the evening and overnight hours (5 pm to 3 am), likely 
related to nonexpert reading and fatigue (3). In patients 
with multiple traumas, the proportion of missed inju-
ries, including fractures, can be high on the forearm and 
hands (6.6%) and feet (6.5%) (4,5).

To date, several studies about artificial intelligence 
(AI) aid to fracture detection have been performed focus-
ing only on certain body parts, such as hand, wrist, and 
forearm (6–9); hip and pelvis (10,11); knees (9); and spine 
(12). One study evaluated fractures in 11 body locations, 
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trained and validated on this development data set based on the  
“Detectron2” framework (15), which was further revised and 
tailor made to the analysis of radiographs by Gleamer. Notably, 
data augmentation—by random rotation, flipping, translation, 
cropping, and resizing—was performed during training. We 
used 270 000 iterations to train the model (“training batch”) and 
updated the parameters using a stochastic gradient algorithm 
with a batch size of four. Depending on the threshold set on the 
scores returned by the algorithm for each region of interest, the 
final pipeline is capable of running at different operating points 
in terms of sensitivity and specificity. When the AI confidence 
level surpasses the threshold, the software aid highlights the region 
of interest with a white square box on the radiograph.

The AI was validated for detection and localization of fractures 
on digital radiographs of diagnostic quality and subsequently 
integrated into a radiologic image interpretation software devel-
oped by Gleamer as a tool to assist fracture detection, highlighting 
potential fractures with a rectangular box.

The current study is a retrospective diagnostic study using 
the multi-reader, multi-case methodology, based on an exter-
nal multicenter data set from the United States, registered at 
ClinicalTrials.gov (identification no: NCT04532580). The over-
all study design is summarized in Figure 1.

The code underlying this work can be found online at https://
github.com/facebookresearch/detectron2.

Data Set Acquisition
A total of 480 radiographic examinations were acquired through 
three radiologic data providers in the United States. Our data 
set was generated from 11 different manufacturers of radio-
logic data sources: Konica Minolta, Samsung Electronics, GE 
Healthcare, Philips Medical Systems, KODAK, Canon, Swissray, 
Hologic, Varian, Siemens, and Fujifilm. Images were acquired 
using these instruments and collected from multiple institutions 
within the United States. Between July 2020 and January 2021, 
the radiographic examinations were sampled following inclusion 
and exclusion criteria with stratification on region and fracture 
status. At least 60 examinations had to be included for each of 
the following anatomic regions: foot and ankle, knee and leg, 
hip and pelvis, hand and wrist, elbow and arm, shoulder and 
clavicle, rib cage, and thoracolumbar spine. In addition, 50% of 
examinations of each region with one fracture or more and 50% 
of examinations with no fracture had to be included, as well as 
25% of examinations with at least one “nonobvious” fracture, 
according to experts during ground truth determination, and 
25% with only “obvious” fractures. The number of projections 
or hanging protocol was variable because images were retrospec-
tively collected from multiple institutions with their own image 
acquisition protocols outside the control of the investigators.

Ground Truth Definition
Ground truth was established by two experienced musculoskele-
tal radiologists (D.H. and A.J.K., with 12 years and 8 years of ex-
perience, respectively), who independently interpreted all exami-
nations without clinical information. Only acute fractures were 
considered to be a positive finding in our study. Therefore, the 
term fracture refers to an acute fracture, unless otherwise stated. 

including the upper and lower extremities and spine (13), but 
the clinicians who read the radiographs with AI and without AI 
assistance were emergency medicine physicians and physician 
assistants only, with senior orthopedic surgeons providing the 
ground truth; no radiologist was involved in the radiographic 
interpretation. Another recent study analyzed fractures in 16 
anatomic locations; however, readers of the radiographs were ra-
diologists and orthopedic surgeons only (14).

The aim of this study was to assess the effect of assistance 
by AI on diagnostic performances of physicians for fractures 
on radiographs.

Materials and Methods
This retrospective study was funded by Gleamer, which devel-
oped the AI and software and built the study sample and de-
sign. Data analysis and manuscript writing were performed by 
authors not affiliated with Gleamer (A. Gillibert, a biostatisti-
cian, and A. Guermazi and D.H., musculoskeletal radiologists). 
Five authors (A.D., A.T., E.L., A.P., and N.E.R.) are employees 
of Gleamer. Two authors (A. Guermazi and D.H.) had control 
of the data and the information submitted for publication. The 
current protocol was approved by the WellCare Group institu-
tional review board (no. 20202256), who waived informed con-
sent because of the retrospective nature of this study and the 
fact that all images were deidentified and without any clinical 
information. Our study was Health Insurance Portability and 
Accountability Act compliant.

Study Design
The AI algorithm was developed using a development data set 
of 60 170 radiographs of patients with trauma from 22 institu-
tions between January 2011 and May 2019. This data set was 
randomly split into a training set (70%), validation set (10%), 
and internal test set (20%). A deep learning algorithm was 

Abbreviations
AI = artificial intelligence, AUC = area under the receiving operating 
characteristic curve, ROC = receiver operating characteristic

Summary
Artificial intelligence assistance for searching skeletal fractures on radio-
graphs improved the sensitivity and specificity of readers and shortened 
their reading time.

Key Results
 n In a retrospective study of 480 patients, artificial intelligence (AI)–

assisted radiographic interpretation by six types of readers showed 
a 10.4% improvement of fracture detection sensitivity (75.2% vs 
64.8%, superiority P , .001) without specificity reduction (5.0%, 
95.6% vs 90.6%; P = .001 for noninferiority).

 n AI assistance shortened the radiograph reading time by 6.3 seconds 
per patient (P = .046).

 n The improvement in sensitivity was significant in all locations 
(delta mean, 8.0%–16.2%; P , .05) but shoulder and clavicle and 
thoracolumbar spine (delta mean, 4.2% and 2.6%; P = .12 and 
.52, respectively).

 n The stand-alone performance of the AI algorithm  for fracture 
detection had an area under the receiver operating characteristic 
curve of 0.97 (P , .001).
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Each acute fracture was tagged as “obvious” or “nonobvious” by 
each expert. Examinations with at least one nonobvious fracture 
were considered as nonobvious. “Obvious fractures” were frac-
tures that were displaced, comminuted, markedly angulated, or 
otherwise easily identifiable at a glance on radiographs for any 
reader. “Nonobvious fractures” were fractures that were subtle 
nondisplaced fractures that required careful attention and detailed 
analysis of the radiograph even by expert radiologists.

Clinical Validation Execution
All examinations were independently interpreted by 24 clinicians 
from multiple institutions within the United States, including 

both in-training and board-certified physicians with variable 
years of experience (2–18 years) in radiographic interpretation 
for fracture detection (see Table E1 [online] for details).

All readers were presented, in random order, the 480 radio-
graphic examinations of the validation data set twice—once with 
the assistance of AI software and once without the assistance, 
with a minimum washout period of 1 month.

Reader Performance
The sensitivity per patient was defined as the proportion of pa-
tients for whom all actual fractures were discovered (each one, on 
at least one radiographic view), including potentially multiple 

Figure 1: Flowchart summarizes the study design. min. = minimum.
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fractures at more than one region, among patients having at least 
one fracture, even if some incorrect marks (false positives) had 
been added by the reader. The specificity per patient was defined 
as the proportion of patients for whom no fracture mark was 
placed by the reader among patients having no fracture.

The sensitivity per fracture was defined as the proportion of 
fractures correctly detected by the reader among all fractures, 
counting multiple fractures per patient where appropriate. The 
per-patient average number of false-positive fractures was de-
fined as the average number of marks put outside of a fracture 
per patient. The Youden index per patient was defined as (sensi-
tivity per patient) 1 (specificity per patient) 2 1.

Statistical Analysis
The two coprimary outcomes were sensitivity per patient and 
specificity per patient. For the trial to be successful, both the supe-
riority of the sensitivity per patient and the noninferiority of the 
specificity per patient, at a margin of 23%, had to be demon-
strated for AI-aided readings compared with unaided readings, on 
the set of 24 readers, with one-sided significance thresholds set at 
2.5%. Assuming that the clinical consequences of a false-negative 
finding are twice as bad as the consequences of a false-positive 
finding, a prevalence of fractures of 20%, and a sensitivity gain of 
8.7% (observed in a previously published study [16]), a specificity 
inferiority of 4.35% would be acceptable; a noninferiority margin 
at 23% is safer, taking into account the subjectivity of the 2:1 
false-negative–to–false-positive ratio.

In case of successful analysis, the superiority on specificity 
per patient was searched (hierarchical testing). The effect of AI 
aid on sensitivity per patient and specificity per patient and 
other metrics was assessed with a modified paired Student t 
test taking in account the correlation between readers and be-
tween examinations and interactions (Appendix E1 [online]). 
Sensitivity analyses are described in Appendix E1 (online). A 
similar method was used to assess the period and the carryover 
effects. In addition to evaluation of diagnostic performance of 
the human readers with or without AI assistance, stand-alone 
AI performance was also assessed using receiver operating char-
acteristic (ROC) curves and free-response ROC curves (Ap-
pendix E1 [online]).

Statistical analyses were all performed using software (R, ver-
sion 4.0.2; the R Foundation for Statistical Computing). The 
significance threshold was set at two-sided 5% (P , .05) for all 
secondary analyses, without multiple testing procedure.

Results

Data Set Characteristics
A total of 480 patients were included (Fig 2) (mean age, 59 years 
6 16 [standard deviation]; 327 women) (Table 1). Becausee 
some patients had several fractures, a total of 350 fractures were 
found in 240 patients. Precise anatomic locations of all fractures 
are summarized in Table E2 (online).

Primary Analysis
The sensitivity per patient was estimated at 64.8% (3732 of 
5760 readings) without AI aid and 75.2% (4331 of 5760 read-

ings) with AI aid, with an AI effect estimated at 110.4% (95% 
CI: 6.9, 13.9; one-sided P , .001 for superiority). The speci-
ficity per patient was estimated at 90.6% (5217 of 5760 read-
ings) without AI aid and 95.6% (5504 of 5760 readings) with 
AI aid, with an AI effect estimated at 15.0% (95% CI: 12.0, 
18.0; one-sided P = .001 for noninferiority and one-sided P = 
.001 for superiority). Therefore, the primary analysis was suc-
cessful, and the superiority of specificity per patient with AI 
aid was demonstrated (hierarchical test). Other metrics for all 
readers are compared in Table 2 by using two-sided tests. Over-
all, the reading time was 6.3 seconds shorter (95% CI: 212.5, 
20.1; P = .046) with AI aid than without.

Sensitivity Analyses
Planned sensitivity analyses did not change the point estimate 
and tended to reduce the width of the CI of the sensitivity per 
patient gain, up to 26% for the linear mixed-effects model 
compared with the primary analysis, meaning that the primary 
analysis is more conservative (Table E3 [online]). A post hoc 
sensitivity analysis removing the outlier (a rheumatologist with 
extremely low diagnostic performances) did not change the con-
clusions: There was a 9.5% (95% CI: 16.4, 112.5; one-sided  
P , .001 for superiority) gain of sensitivity per patient and 4.0% 
(95% CI: 11.8, 16.2; one-sided P , .001 for superiority) gain 
of specificity per patient.

Period and Carryover Effects
The carryover effect (time 3 AI interaction) for the sensi-
tivity per patient was estimated as an increase of effect of 
12.41% (95% CI: 27.10, 12.28; P = .30) when the AI 
assistance was in the second period rather than in the first 
period. The period effect, equal to the average sensitivity per 

Figure 2: Flowchart of the study sample determination. MSK = musculoskeletal.
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patient in the second period minus the average sensitivity 
per patient in the first period, was absent (20.19%; 95% 
CI: 22.03, 11.65; P = .83). There was no evidence of car-
ryover effect for the reading time (time 3 AI interaction: 
13.0 seconds [95% CI: 22.6, 18.6; P = .28]), but the 
period effect was present (27.9 [95% CI: 212.6, 23.2; P 
= .002]) without generating a bias in our main analysis due 
to the balanced design of the study.

Subgroup Analyses
Results of readings by all 24 readers are presented in Table 
E2 (online). As shown in Table 3, overall, AI-assisted reading 
resulted in improved sensitivity per patient for all specialties 
(ranging from 19.1% to 117.2%, P values ranging from .02 
to .046) but radiologists and rheumatologists (17.6% [95% 
CI: 23.8, 19.0; P = .12] and 117.2% [95% CI: 20.4, 34.8; 
P = .05], respectively). Although the specificity per patient 
was higher with AI aid in all specialties, we found no evidence 
of differences (ranging from 12.0% to 114.0%, P values 
ranging from .07 to .49); the statistical precision was low for 
these analyses. We found no evidence that the effect of the AI 
assistance was different between specialties for sensitivity per 

patient (P = .39 for interaction) or for specificity per patient 
(P = .14 for interaction).

The AI aid improved the sensitivity per patient from 58.0% 
(1975 of 3408 readings) to 70.4% (2398 of 3408 readings) for 
nonobvious fractures (112.4%; 95% CI: 7.8, 17.0; P , .001) 
and from 74.7% (1757 of 2352 readings) to 82.2% (1933 
of 2352 readings) for obvious fractures (17.5%; 95% CI: 
3.7, 11.2; P , .001), with no evidence of a difference of gain 
(24.9%; 95% CI: 29.9, 10.0; P = .05).

Overall, AI-aided reading showed improvement of sensitiv-
ity per patient for fracture detection across all anatomic loca-
tions (with greater than 10% improvement observed in sensitiv-
ity per patient for fractures in foot and ankle, knee and leg, hip 
and pelvis, hand and wrist, elbow and arm, and rib cage) but 
thoracolumbar spine and shoulder and clavicle (less than 5% 
improvement, no evidence of difference), as detailed in Table E4 
(online), and for both expert and nonexpert readers (Table 4).  
We found neither evidence of an interaction of the ef-
fect of AI assistance on the sensitivity per patient (between-
location standard deviation of AI effect = 4.4%; P = .30) 
with the location, nor for the specificity per patient (be-
tween-location standard deviation of AI effect = 1.7%,  

Table 2: Diagnostic Performance of 24 Readers for Fracture Detection with and without AI Assistance

Parameter Without AI (n = 480)* With AI (n = 480)* Delta Mean† 
Sensitivity per patient 64.8 6 9.4 75.2 6 5.9 10.4 (6.9, 13.9) [, .001]
Specificity per patient 90.6 6 8.0 95.6 6 2.8 5.0 (2.0, 8.0) [.001]
Youden index per patient 55.4 6 15.0 70.7 6 6.0 15.4 (15.4, 15.4) [, .001]
Average fracture detection sensitivity per patient 65.4 6 10.6 76.2 6 6.4 10.8 (7.1, 14.4) [, .001]
Average no. of false-positive fractures per patient in 

patients without fracture
0.11 6 0.10 0.05 6 0.04 20.06 (20.10, 20.02) [.002]

Average no. of false-positive fractures per patient in 
patients with fracture

0.10 6 0.06 0.10 6 0.06 0.003 (20.026, 0.031) [.85]

Reading time (sec) 55.5 6 32.6 49.2 6 28.5 26.3 (212.5, 20.1) [.046]

Note.—Except where indicated, data are percentages. AI = artificial intelligence.
* Data are means 6 standard deviations.
† Numbers in parentheses are 95% CIs. Numbers in brackets are P values.

Table 1: Demographics by Anatomic Location

Anatomic Location
Positive for Fracture Negative for Fracture Total

No. of Women Age (y)* No. of Women Age (y)* No. of Women Age (y)*
Foot and ankle 20/30 (67) 49 6 14 22/30 (73) 60 6 15 42/60 (70) 54 6 16
Knee and leg 17/27 (63) 59 6 13 17/30 (57) 64 6 14 34/57 (60) 62 6 14
Hip and pelvis 19/30 (63) 56 6 12 25/30 (83) 65 6 16 44/60 (73) 61 6 15
Hand and wrist 22/30 (73) 51 6 17 19/30 (63) 62 6 16 41/60 (68) 56 6 17
Elbow and arm 19/30 (63) 50 6 13 24/28 (86) 63 6 14 43/58 (74) 56 6 15
Shoulder and clavicle 19/29 (66) 63 6 19 13/25 (52) 58 6 17 32/54 (59) 61 6 18
Rib cage 22/29 (76) 67 6 12 19/30 (63) 67 6 15 41/59 (70) 67 6 14
Thoracolumbar spine 21/30 (70) 46 6 16 18/26 (69) 68 6 16 39/56 (70) 56 6 20
Multiple locations 4/5 (80) 60 6 27 7/11 (64) 67 6 10 11/16 (69) 65 6 17
All regions 163/240 (68) 55 6 16 164/240 (68) 64 6 15 327/480 (68) 59 6 16

Note.—Numbers in parentheses are percentages.
* Data are means 6 standard deviations.



Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence

6 radiology.rsna.org  n  Radiology: Volume 000: Number 0—Month 2022

P = .77). There were 171 patients with a single fracture and 69 
patients with multiple fractures, and a similar degree of sensi-
tivity improvement was observed for both subgroups. Sensitiv-
ity per fracture improved from 76.0% (3120 of 4104 readings) 
to 86.1% (3533 of 4104 readings), that is, by 10.1% (95% 
CI: 6.2, 13.9; P , .001) for patients with single fractures, and 
from 55.3% (2375 of 4296 readings) to 66.7% (2867 of 4296 
readings), that is, by 11.5% (95% CI: 6.7, 16.2; P , .001) for 
patients with multiple fractures. The difference of AI gain of 
sensitivity per fracture between patients with multiple fractures 

(111.5%) and single fractures (110.1%) was estimated at 
1.4% (95% CI: 23.3, –6.0; P = .54).

One outlier rheumatologist reader had a very low sensitiv-
ity per patient without AI assistance (37.9%), which was the 
lowest value among all readers, and AI assistance improved 
sensitivity to 70.0% (gain of 32.1%). When this reader was 
excluded, the other three rheumatologist readers had an av-
erage of 12.2% (95% CI: 21.7, 126.1; P = .06) improve-
ment in sensitivity per patient, which is closer to 10.4% 
improvement of all readers. The outlier rheumatologist had 

Table 3: Improvement in Diagnostic Performance of Fracture Detection with AI Assistance

Reader

Absolute Gain of  
Sensitivity per Patient 
(Sensitivity) (%)

Absolute Gain of  
Specificity per Patient 
(Specificity) (%)

Relative Change in  
Average No. of False-Positive 
Fractures per Patient in 
Patients with Fracture (%)

Relative Change in 
Average No. of False-
Positive Fractures per 
Patient in Patients 
without Fracture (%)

Four radiologists 7.6 (23.8, 19.0) [.12] 2.8 (28.6, 14.2) [.49] 216 (261, 81) [.52] 245 (297, 1044) [.58]
Four orthopedists 9.1 (0.7, 17.4) [.04] 2.0 (23.0, 7.0) [.29] 18 (234, 111) [.44] 226 (262, 46) [.26]
Four emergency physicians 9.9 (3.2, 16.6) [.02] 3.4 (22.0, 8.8) [.14] 20 (215, 69) [.19] 259 (297, 394) [.34]
Four emergency medicine 

physician assistants
9.4 (0.3, 18.4) [.046] 2.5 (20.5, 5.5) [.08] 45 (266, 531) [.48] 250 (283, 44) [.13]

Four rheumatologists 17.2 (20.4, 34.8) [.05] 14.0 (23.9, 31.9) [.09] 218 (270, 122) [.57] 264 (297, 337) [.29]
Four family physicians 9.3 (3.4, 15.2) [.02] 5.2 (20.9, 11.3) [.07] 7 (252, 137) [.80] 260 (293, 146) [.21]
All readers 10.4 (6.9, 13.9) [, .001] 5.0 (2.0, 8.0) [.002] 3 (223, 37) [.85] 253 (276, 28) [.03]

Note.— Numbers in parentheses are 95% CIs, and numbers in brackets are P values. AI = artificial intelligence.

Table 4: Expert Readers versus Nonexpert Readers: Subgroup Analysis

Reader and Parameter Without AI (n = 480) With AI (n = 480) Delta Mean*
Nonexpert
 Sensitivity per patient (%) 61.8 6 8.6 73.3 6 5.2 11.4 (7.0, 15.9) [, .001]
 Specificity per patient (%) 89.8 6 8.7 96.1 6 2.7 6.3 (2.3, 10.3) [.004]
 Youden index per patient (%) 51.6 6 15.4 69.3 6 5.4 17.7 (10.6, 24.8) [, .001]
 Sensitivity per fracture (%) 62.0 6 9.6 74.3 6 5.8 12.3 (7.7, 16.9) [, .001]
 Average no. of false-positive fractures per patient 

in patients without fracture
0.12 6 0.11 0.05 6 0.04 20.07 (20.12, 20.03) [.005]

 Average no. of false-positive fractures per patient 
in patients with fracture

0.09 6 0.06 0.09 6 0.06 0.004 (20.031, 0.039) [.79]

 Time (sec)†  54.1 6 33.8 49.3 6 31.7 24.8 (212.5, 2.9) [.21]
Expert
 Sensitivity per patient (%) 70.7 6 8.3 79.1 6 5.5 8.3 (3.2, 13.5) [.006]
 Specificity per patient (%) 92.1 6 6.5 94.5 6 2.8 2.4 (22.0, 6.8) [.23]
 Youden index per patient (%) 62.8 6 11.5 73.5 6 6.6 10.7 (3.5, 18.0) [.01]
 Sensitivity per fracture (%) 72.2 6 9.4 79.9 6 6.1 7.7 (2.6, 12.8) [.009]
 Average no. of false-positive fractures per patient 

in patients without fracture
0.09 6 0.08 0.06 6 0.04 20.03 (20.09, 0.02) [.21]

 Average no. of false-positive fractures per patient 
in patients with fracture

0.19 6 0.06 0.12 6 0.05 20.001 (20.045, 0.043) [.96]

 Time (sec)†  58.5 6 32.0 49.1 6 22.6 29.4 (222.3, 3.6) [.13]

Note.—Data are for 480 patients. Expert readers are orthopedists and radiologists. Nonexpert readers are all others. Except where indicated, 
data are means 6 standard deviations. AI = artificial intelligence.
* Numbers in parentheses are 95% CIs, and numbers in brackets are P values.
† Data are averages 6 standard deviations.
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a very low specificity per patient without AI (65.4%) and 
had a 28.3% improvement with AI.

Evaluation of Stand-Alone AI Performance
Stand-alone AI ROC and free-response ROC curves are shown 
in Figure 3. For stand-alone AI, the area under the ROC curve 
(AUC) based on custom metrics was 0.93 (95% CI: 0.90, 0.95; 
P , .001) and 0.97 (95% CI: 0.95, 0.98; P , .001) for an AUC 
based on a binary diagnosis of fracture to be comparable to the 
literature. The performances of the stand-alone AI at the high-

sensitivity threshold named DOUBT-FRACT for ribs and tho-
racolumbar spine were lower than the stand-alone performance 
for other anatomic locations, with a relatively large number of 
false-positive findings (Tables 4, 5). There was no evidence that 
AI assistance provided a gain of sensitivity per patient in the tho-
racolumbar spine (from 59.5% [371 of 624 readings] to 62.0% 
[387 of 624 readings], 12.6%, P = .56), but it provided a major 
gain in the rib cage (from 29.2% [210 of 720 readings] to 45.4% 
[327 of 720 readings], 116.2%; P = .002) (Table E4 [online]).

Examples of true- and false-positive and/or negative ex-
aminations are shown in Figures 4 and 5. During our study, a 
newer version of the AI algorithm was developed (although not 
included in the software), but we found no evidence of differ-
ence between the new and old AI algorithm (custom metrics 
AUC, 0.92; 95% CI: 0.89, 0.94) with a difference estimated at  
10.002 (95% CI: 20.006, 10.009; P = .69) compared to the 
original AI algorithm.

Discussion
Missed fractures on radiographic images are not an uncommon 
problem in the setting of acute trauma, and we aimed to assess 
the effect of artificial intelligence (AI) assistance on diagnostic 
performances of physicians for radiographic fracture detection. 
We used an external multicenter data set from the United States, 
including multivendor radiographic acquisition systems that 
were not related to the development set originating from Eu-
rope, providing the robust generalization capacity of the model. 
Our AI system can interpret full-size high-spatial-resolution im-
ages, including multiple radiographic views in a patient, and can 
be integrated into picture archiving and communication systems 
used in the daily clinical practice.

The stand-alone performance of our AI algorithm (AUC, 
0.97) is comparable to that of other published studies (AUC 
.0.90 for most studies) (6–13). In this retrospective study of 480 
patients, AI-assisted radiographic reading by six types of readers 
showed a 10.4% improvement of fracture detection sensitivity 
(75.2% vs 64.8%; P , .001 for superiority) without specificity 
reduction (15.0%; 95.6% vs 90.6%, P = .001 for noninferior-
ity). AI assistance shortened the radiograph reading time by 6.3 
seconds per patient (P = .046). The improvement in sensitivity 
was significant in all locations (delta mean, 8.0%–16.2%; P , 
.05) but shoulder and clavicle and thoracolumbar spine (delta 
mean: 4.2% and 2.6%, respectively; P = .12 and .52).

A major advantage that AI can bring to clinical practice, par-
ticularly in the emergency setting, is its potential to function as 
a triage system at busy medical centers. If the AI can detect a 
fracture prior to radiologists’ interpretation, then that particular 
study can become prioritized on the work list. If radiologists can 
prioritize reading studies with a potentially positive finding, then 
delay between initial nonexpert reading and the radiologists’ fi-
nal report can be minimized, thereby improving the patient care. 
Another potential benefit of AI is shorter reading time. Even if 
by only a few seconds per radiographic examination, a reduction 
in reading time can add up to a meaningful amount of time 
saved for radiologists who may read 200–300 radiographs per 
day. However, we cannot prove this will really be the case in real-
life situations. The AI-assisted fracture recognition also has the 

Figure 3: (A) Stand-alone artificial intelligence (AI) receiver operating char-
acteristic (ROC) and (B) free-response ROC curves. Expert readers (blue circles) 
include orthopedists and radiologists, and nonexpert readers (green circles) com-
prise all other readers. AI-unassisted readers’ diagnostic performances are shown 
in both graphs (blue and green circles). Area under the ROC curve for the stand-
alone AI (solid line in A) was 0.93 (95% CI: 0.90, 0.95). Note: "Free-response 
ROC curve" is a modification of ROC curve to adapt to multiple fractures in one 
patient, with per-fracture metrics rather than per-patient metrics. PP-FPFW = average 
number of false-positive fractures per patient, SEPW = average fracture detection 
sensitivity per patient, SPEPW = average fracture detection specificity per patient.
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potential to enhance diagnostic ability of both radiologists and 
nonradiologists, not only by detecting subtle findings difficult to 
visualize with human eyes but also by preventing cognitive errors 
due to human fatigue or satisfaction bias in image interpretation 
(17,18). The benefit of AI may be especially seen in emergency 
medicine physicians and physician assistants, on-call orthopedic 
surgeons, and on-call radiologists likely exposed to system- related 
errors in radiographic interpretation, such as visual fatigue and 
decision fatigue (19–21).

AI assistance was helpful for detection of nonobvious or sub-
tle fractures but also for detection of obvious fractures, which 
was unexpected. This confirms clinical usefulness of AI in real 
clinical practice. In contrast, sensitivity and specificity for de-
tection of rib and thoracolumbar spine fractures were relatively 
low for both AI-assisted human readings (sensitivity per patient, 
45.4% for ribs and 62.0% for spine) and the stand-alone AI 
algorithm (sensitivity per patient, 76.7% for ribs and 76.9% for 
spine). The stand-alone AI outperformed human readers in both 
instances. Detection of fractures in multiple anatomic locations 
in a single patient was also a relative weakness of all human read-
ers, as well as the stand-alone AI algorithm.

Ongoing research has shown that an AI algorithm can be used 
to provide a percentage likelihood or risk score of a specific patho-
logic condition, such as likelihood of cancer, based on imaging 
data as well as other clinical information (22). In our study, the AI 
provided a confidence level but not a precise probability of frac-
ture. The probability of fracture is highly dependent on the clinical 
setting, and, thus, it may be hard to provide correct figures.

Our study had limitations. First, it was retrospective in 
nature and all radiographs were read without relevant clinical 
information (23). In a real clinical setting, nonradiologist cli-
nicians can examine the patient and obtain detailed history to 
identify the area of concern before looking at the radiographs, 
thus improving both diagnostic sensitivity and specificity. 
Conversely, radiologists often interpret radiographs with 
little or inadequate clinical history in real life, thus naturally 

performing a somewhat “blinded” interpretation. As far as 
radiologists are concerned, therefore, blinded reading in this 
study may not necessarily be completely unrealistic. During 
the radiographic interpretation by human readers, there were 
several instances where it was difficult to determine whether 
the visible fracture was acute or chronic due to lack of clini-
cal information, particularly involving ribs and thoracolum-
bar spine. A contextual bias could alter the interpretation of 
readers because the setting was quite different from real life, 
especially for nonradiologist readers (24). Second, due to ar-
tificially set 50% prevalence of fractures in our study sample, 
it was not possible to calculate positive or negative predictive 
values. The artificial balance between anatomic locations and 
reader specialties made the sample nonrepresentative of the 
actual population who will benefit from AI, which would bias 
results if there are interactions between the AI and the reader 
specialty or anatomic location. Although the baseline condi-
tion (with AI or without AI) was randomized, and a washout 
period of at least 1 month was respected, there may be a car-
ryover effect that would tend to disadvantage the better con-
dition (ie, condition with AI); although we did not find one 
with statistical testing, the power of interaction tests is known 
to be poor. Third, our study used a consensus ground truth 
based on radiographic interpretation by expert musculoskel-
etal radiologists without CT. Overall, the context of readings 
was quite different from a real-life clinical setting, limiting 
the generalizability and clinical relevance of this work. Of 
note, use of AI does not improve detection of radiographi-
cally occult fracture because it is by definition “negative” on 
radiographs. Because the AI is designed to be used as an aid 
with human confirmation, any occult fracture that it would 
detect would likely be dismissed by the human reader. The 
inability of AI to detect radiographic occult fracture is not 
a limitation of the AI itself, but rather a limitation of radi-
ography as a modality in general. Those fractures need to be 
depicted with cross-sectional imaging as clinically warranted.

Table 5: Stand-Alone AI Performance for Fracture Detection Using DOUBT-FRACT Threshold

Anatomic Location
Sensitivity  
per Patient (%)*

Specificity  
per Patient (%)*

Average No. of False-Positive 
Fractures per Patient in 
Patients without Fracture† 

Average No. of False-Positive 
Fractures per Patient in 
Patients with Fracture† Patient-wise AUC‡

Foot and ankle 93 (28/30) 93 (28/30) 0.07 6 0.25 0.20 6 0.55 0.97 (0.94, 0.99)
Knee and leg 90 (27/30) 93 (25/27) 0.07 6 0.27 0.07 6 0.25 0.93 (0.85, 0.98)
Hip and pelvis 90 (27/30) 87 (26/30) 0.23 6 0.68 0.20 6 0.48 0.93 (0.85, 0.98)
Hand and wrist 93 (28/30) 100 (30/30) 0.00 6 0.00 0.13 6 0.57 0.94 (0.83, 0.98)
Elbow and arm 100 (28/28) 97 (29/30) 0.03 6 0.18 0.04 6 0.19 0.98 (0.96, 0.99)
Shoulder and clavicle 84 (21/25) 83 (24/29) 0.17 6 0.38 0.08 6 0.28 0.90 (0.79, 0.96)
Rib cage 77 (23/30) 69 (20/29) 0.55 6 0.95 0.50 6 0.90 0.75 (0.60, 0.87)
Thoracolumbar spine 77 (20/26) 80 (24/30) 0.23 6 0.50 0.38 6 0.90 0.86 (0.73, 0.95)
Multiple locations 73 (8/11) 80 (4/5) 0.20 6 0.45 1.64 6 3.04 0.75 (0.56, 0.93)
All locations 88 (210/240) 88 (210/240) 0.17 6 0.51 0.27 6 0.90 0.93 (0.90, 0.95)

Note.—AI = artificial intelligence, AUC = area under the receiver operating characteristic curve.
* Numbers in parentheses are patients.
† Data are means 6 standard deviations.
‡ Numbers in parentheses are 95% CIs.
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In conclusion, radiographic artificial intelligence assistance 
improves the sensitivity, and may even improve the specificity, 
of fracture detection by radiologists and nonradiologists involv-
ing various anatomic locations. It also slightly reduces the time 
needed to interpret radiographs.
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Figure 5: Stand-alone artificial intelligence (AI) performance examples: false-positive and false-negative radiographs. (A) Radiograph shows a small corticated ossific 
fragment adjacent to inferior glenoid margin (arrow), likely sequela of prior trauma (chronic fracture) or calcified detached inferior labrum rather than acute fracture. AI 
noted this as an acute fracture using the DOUBT-FRACT threshold. Fifteen readers read this as acute fracture without AI. Four readers thought the fracture was chronic with-
out using AI, but reversed their reading with AI. Only two radiologists, one rheumatologist, and two family medicine physicians recognized the chronicity of the fracture with 
and without AI. (B) Radiograph shows a subtle nondisplaced fracture of the fifth metacarpal base (arrow), which was not detected by AI. All readers missed this fracture 
with and without AI. Only ground truth readers noted the fracture. This fracture was only appreciable on the anteroposterior view shown here and was not clearly visible on 
(C) the oblique view or the lateral view (not shown) of the right hand. There were two predefined thresholds for fracture detection: high-sensitivity threshold named DOUBT-
FRACT, equal to 50% after transformation, and high-specificity threshold named FRACT, equal to 90% after transformation.


