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The IMAD in Nantes and the French Society for Endoscopy have come to-
gether for an original initiative: the publication of a book devoted to artificial 
intelligence in digestive diseases. On the eve of the introduction of these tech-
nical innovations in medical practice, the book responds to the urgent need to 
summarise the current knowledge. Let’s make no mistake about it: the rise of 
artificial intelligence marks a crucial moment in the history of our disciplines. 
It comes after 15 years of effort to invent new strategies in order to achieve 
precise, decision-making and proactive endoscopy. At the same time, it opens 
a new chapter and deeply challenges the role of physicians. 

The medical community should not only be a spectator of this technical 
revolution. Our institutions are present at the interface between techno-in-
dustrial actors, patients, political and administrative authorities. They will 
play a key role, not only in the evaluation of the tools, but also in the 
definition of transversal solutions. Because they are the only ones able to 
understand the patient in his singularity, our institutions will have a role to 
play in the revolution that is coming. They will play it.

Emmanuel Coron 
Director of the Institute of Digestive Diseases (IMAD), 
Nantes University Hospital 
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AI and health: history and models

by Romain Galmiche
 Independant publisher

To define the applications of artificial intelligence in health, we firstly need to define 
what artificial intelligence (AI) is. A first definition is that of a set of techniques allowing 
the aggregation and processing of heterogeneous and/or complex data. Health systems 
are in fact used for 1) the automatic interpretation of information, 2) the fusion of data, 
3) the construction of representations from information. This first delineation of AI of-
fers the advantage of being operational, but it is nevertheless frustrating. Its main merit 
is the ability to group a number of devices for image interpretation, voice recognition, 
statistical analyses, and even tools that help with decision making. It however omits the 
diversity of the processes. The «black box» effect of AI is well known by practitioners. It 
may be a trap as well as a facility, considering that it leads to absolute confidence in the 
machine, without considering its limitations.
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1956 Conference of Dartmouth 1997 Deep Blue defeats Kasparov

1957 Creation of the Perceptron 2011 Watson at Jeopardy

1958 Invention  
of the Lisp language

2011 Watson in the  
Emergency Department (UK)

1972 Start of the MYCIN program 2016 AlphaGo champion

 First AI winter 2019 Turing price awarded 
 to Y. Lecun

1979 Beginning of the Neocognitron
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Beyond the diversity of techniques, a second definition of AI is as a disciplinary 
field, at the intersection of formal logic, cognitive and computer science. It aims to 
reproduce or simulate the elemental operations that characterise human intelligence. 
This definition is certainly more satisfactory than the first one since it better accounts 
for the originality of the methods used and the starting hypotheses that are made. In 
particular, it takes into account the complementarity of the so-called cognitive and 
connectionist approaches, referring to the two major conceptions of the human mind, 
i.e. either that of a discrete logical/modular analysis system vs that of an auto-ad-
justed system using a strategy of weighting [1]. 

This definition, despite being satisfactory and rigorous, does not reflect yet ano-
ther « technoscientific » dimension, i.e. the expectations and projections raised in the 
society. The concept of high intelligence, as opposed to the current low AI, has been 
raised by the philosopher Searle. He concluded that it was impossible for AI to ac-
cess the true semantic understanding by simple manipulation of symbols. Since then, 
the term of high AI was reinvested in a positive sense by essayists that imagined the 
advent of AI able to supersede human capacity. This fantasy dimension, accessory as 
it might seem on first instance, cannot be ignored when it comes to health. The topic 
of transhumanism is another illustration and a good example of this dimension [2]. 

A brief historical overview of AI is warranted in order to present its various facets, 
its uses, the fundamental and experimental models available, and the expectations it 
raised.

AI or the history of an emulation between the man and the machine 

"That good old artificial intelligence"

Artificial intelligence as a discipline has an official date of birth: the conference gi-
ven by John MacCarthy at Dartmouth in 1956, a conference that Marvin Minsky and 
Herbert Simon, among others, attended [3-5]. An ambitious and coherent program 
was discussed there: assigning machines with a number of cognitive tasks that are 
normally attributed to humans. This precise date comes after an already old historical 
past. One could cite for example Alan Turing and his machine, a «proto-computer» 
that was given the task of denying or confirming a mathematical theorem. Another 
proposal by Turing: reproducing mental processes of animals or young children, that 
are easier to isolate and understand than those of adults, has a promising future ... 

From its inception, AI was quickly in competition with the concept of cybernetics: 
this field of science, founded by Norbert Wiener, is defined as the study of the regu-
lation of complex systems and is at the origin of robotics. Even today, the contours 
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of the two disciplines, AI and robotics, can seem blurry. An autonomous car includes 
an AI device. Likewise, the contemporary rise of the «Internet of things» allows the 
AI-dependent interoperability of robots, particularly in the domain of health: pacema-
kers, surgical robots and others, being able to send and integrate complex data in 
real time. On a more theoretical ground, medical cybernetics, focused on the idea of 
internal regulation, has contributed to the emergence of «mathematical physiology», 
heralding the concept of biomarkers, the latter being finely studied by AI applied to 
health [6].

Research on AI firstly aims to reproduce certain mental traits, such as those 
that allow humans to think and act in a limited amount of time, based on limited 
resources and imperfect information [3,4]. The first AI thus responds to a heu-
ristic problem: optimising the use of algorithms. One could quote the Alpha-beta 
pruning algorithm of MacCarthy, a method that is applicable for the exploration 
of a decision tree by eliminating suboptimal branches, and it has long been used 
in chess programs. Similarly, the A* algorithm, applied to determine the shortest 
path is widely used in practical applications, such as GPS and for medical ima-
ging with MRI. Quoting Marvin Minsky, the idea that was central to the period 
pre-1962 was to minimise the magnitude of trials and errors. The aim of reducing 
computational operations is also a formal requirement. One of the first symbo-
lic languages, Lisp, quickly became the language of choice of AI. It is based on 
lambda calculus, i.e. a mathematical theory dedicated to solving problems with 
limited resources and to categorise problems according to the level of difficulty. 
In fact, one of the most delicate tasks is to model non-monotonic logic, that is to 
say capable of questioning one of its entry hypotheses... 

This formal, logic-driven approach is complemented by the use of statistics. 
Bayesian networks allow for the representation of a set of variables in a graph 
[7]. They form the basis of a system that can aid in the decision making, since 
they allow an agent to move along the logic knots where the plausibility of a 
hypothesis is calculated based on probability. This system, based on induction, 
allows the calculation of inferences, i.e. to consider propositions as true based 
on prior propositions. Bayesian networks are a powerful help for diagnosis in 
medicine, but are also used in imaging, since they permit modelling of tumor vo-
lume after CT or PET scan based on the algorithm FLAB (Fuzzy Locally Adaptive 
Bayesian Segmentation). A Bayesian probabilistic model permits the delineation 
of homogeneous regions of the tumor and fuzzy transition areas [8,9]. 
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Neural networks

The logical study and the efforts that are summarised led some authors to talk about 
the GOF AI  «  Good Old Fashioned Artificial Intelligence ». At the turn of the 60s, a new 
field of study, aiming to copy neuronal circuits, emerged. The artificial neuron is ins-
pired by the work of the neurologists Warren MacCulloch and Walter Pitts. It consists 
of an input and an output: if the input signal reaches a threshold value, an output 
signal is produced and modulated depending on a pre-specified synaptic weight. The 
networking of these artificial neurons constitutes one of the main branches of machine 
learning. According to what is known as the Hebb rule, a neural network learns by 
strengthening stimulated synaptic connections, according to the principle that: «cells 
that fire together, wire together». The first network of neurons was conceived by the 
psychologist Rosenblatt in 1957 and it was called the Perceptron. It consists of a single 
layer of neurons, and in its initial design, weighed more than a ton. It was funded 
by the United States of America Department of Defense Advanced Research Projects 
Agency (ARPA) and operated as a binary classifier (figure 1). It was used to perform 
supervised learning, since it required an initial training in order to adjust the weights 
until the data used for learning fit in the right class. The strategy in general is promi-
sing, especially for image recognition, since it can be applied in a widespread manner, 
provided that the cases analysed are not too different from the data used for learning. 

The application of AI that led to the most optimistic projections in the 1960s: speech 
recognition, instant language translation, chess invincibility were already mentioned. 
However, these prospects faced a  «winter of artificial intelligence» at the turning of 
the 1970s, as revealed by a sharp fall in the number of grants. The unrealistic nature of 
many projects, as well as a number of limitations explain this. The rise of microcompu-
ters and compiled languages have put the initial successes of AI in perspective, consi-
dering also the cost and the heavy hardware requirements of AI  (the Lisp machine). 
Moreover, the book by Minsky and Papert «Perceptron: an introduction to computatio-
nal geometry» revealed some of the inherent limitations of the Perceptron. A neural 
network consisting of a single layer of neurons cannot handle non-linear functions, i.e. 
those that fall into Boolean logic (OR) (figure 1C) [3,4

This major limitation is however overcome by the rise of multi-layer neural networks. 
Indeed, these are not limited by non-linear functions and they offer new prospects in 
terms of form recognition. Fukushima’s Neocognitron was build in the 80s and took its ins-
piration from neuroscience studies of the cat retina, by combining a layer of simple neu-
rons with several layers of complex neurons. The latter permitting the maintenance of the 
representation of an object, even if it moves in the visual field. In the Neocognitron, the 
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Figure 1. Operation and limitations of the perceptron. A) Pattern intended to 
determine the synaptic weight in a neural network in a two-dimensional space. 
Here, the visual recognition pattern of a «C»; B) Binary classification according 
to a linear function; C) Non-linear classification using exclusive Boolean logic. 
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first layer of neurons is trained as for a Perceptron, but the underlying layers are trained 
under blind conditions: in this case, learning is said to be non-supervised. The neural 
multi-layer networks that were developed in the following decades used procedures with 
more or less autonomous learning, called reinforcement learning. A pattern is presented 
to the machine and a reward is programmed in case of positive recognition. At this point 
however, one large problem that remains is to extract the key characteristics: data extrac-
tion and labelling remain an essential limitation of machine learning. 

The problem of multi-layer neural network learning can be formulated as the need to 
decrease the cost function, i.e. the difference between the observed and the desired beha-
vior of the model. While the possibility to use backpropagation of the cost function, from 
the output to the input, is not specific to deep learning, it is an essential characteristic. 
Thus, the system can discover the interdependencies between the input variables without 
being trained for a particular task. This method of learning of multilayer networks has 
yielded spectacular results since the years 2000, especially in the field of image recogni-
tion. It has greatly benefited from the increasing availability of image databases (including 
images.net, created by American academics) and the development of computer graphic 
cards with increasing calculation power. The so-called convolutional networks allow the 
recognition of a pattern whatever its position in the structure of the network. 

Deep neural networks, after some initial skepticism, have encountered popula-
rity, owing to some spectacular successes (AlphaGo, 2016). They cannot however 
be presented as a panacea. A large number of systems are composite in nature 
and use complex formal AI ontologies (figure 2) together with Bayesian models 
and deep learning. Moreover, an important limitation of deep learning is a lack of 
explanability: the observer has no access to the learning algorithm. Finally, deep 
neural networks are a powerful tool for detecting correlations, but they cannot 
translate them into causality. ”The current AI has no common sense, and common 
sense is vital. It conditions our connection to the world. It fills in the blanks and fills 
in the implicit” (Yann Le Cun) [3].

Artificial Intelligence and health, a long-established relationship 

The introduction of AI techniques in health cannot be simply summarised with a 
linear representation: devices reaching maturity -> application in health. From the 
beginning, AI research was inclined toward medicine, perhaps because it corresponds 
to the notion of «bounded rationality» (Herbert Simon), a domain where an agent 
makes a decision based on limited information. A conceptual shift can then occur from 
rationality that is perceived as being ideal to procedural rationality, in which what 
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Figure 2. Ontology converging towards a diagnosis of appendicitis within 
the framework of the French Lerudi project. In the context of symbolic AI, 
knowledge about a medical field is organised into an ontology, that is, a struc-
tured set of concepts and their relationships, which describe a field while res-
pecting the principles of formal language. An ontology provides a data model 
for reasoning within the domain in question.
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matters is the compliance of a cognitive process with a number of rules. This shift is at 
work in the first health application of AI, MYCIN. 

MYCIN and Watson: the seminal models 

MYCIN is one of the first expert systems, developed at Stanford at the beginning of the 
70s [7]. It consisted of a machine with causal inferences with almost 600 rules allowing 
the examination of the likely causes of an infection and suggest a treatment. It was 
designed with two perspectives: - to stimulate AI research, including graph theory, by 
emulating medical reasoning – to offer an effective support for solid data-driven diagno-
sis to physicians. At that time, the development of logical tools for health purposes was 
considered a key step toward more reproducible and less subjective medical practice. 
The first medical databases were also created around this time, with the appearance of 
Pubmed…MYCIN remains an ambivalent project, designed to imitate and at the same 
time help the physician. It has pioneered some practical aspects that are still relevant 
today regarding application design, such as the partnership between engineers and spe-
cialists in the field. However, this application has failed to settle into clincal practice. 
The reason for this however is not a lack of effectiveness or clinical relevance, but rather 
the underestimation of the time needed to update data. The main utility of MYCIN for 
physicians is for learning.

The application of AI to health has not escaped the winter of AI, and it took until 
the year 2010 and the introduction of Watson (IBM) [5] for this field to actually make 
a come-back with a different system. Watson is not a system dedicated to the medical 
sphere, but it is a versatile program suited for natural language exploration (Deep QA) 
that was first implemented in a game show, the Jeopardy, where candidates answer 
questions on general knowledge. Its computing power enables it to directly explore 
the web to find the right answer. This capacity can be transposed to the medical field 
to provide an aid for diagnosis: Watson uses the context of a case to generate a list of 
diagnoses. While MYCIN proceeds by induction, Watson is able to work by abduction: 
it formulates hypotheses based on correlations before verifying them on specific cases. 
This ability of the machine is in fact close to human «serendipity», i.e. the ability to dis-
cover general patterns from non-structured data [8].

AI for what medicine?

This new ability of deep learning to find correlations resonates with the need of a 4P 
medical model: predictive, personalised, preventive and participative. An application 
for participative medicine for example allows a patient to detect the possible mali-
gnancy of a dermatological lesion on his own, with a reliability comparable to that of 
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an expert. Some applications of AI in health can be implemented in frequently used 
consumer devices (phone, connected watch, etc.) and their qualification as medical 
devices is a complex issue: one of the first uses of Watson in the medical sphere was 
to help manage the reception of patients at British hospital emergency centers with a 
«bot», i.e. a vocal assistant.

AI is also a useful adjunct for the personalisation of medical care. It permits the ag-
gregation of complex data, including images, and allows the caregiver to have access 
to detailed and evolving characterisation of pathologies. The notion of a “digital pa-
tient” (N. Ayache) has implications at two levels: 1) at the clinical level, modeling with 
AI allows for individualised treatment based on a predictive model of the patient’s 
reaction; 2) after anonymisation and data compression, the establishment of a large 
population-wide database is of major interest for medical research. 

Is the future of research written in silico ?

Setting up such large population databases offers new research perspectives, either 
clinical research or in terms of public health. AI determines unsuspected correlations 
between phenotypes and genotypes, or between populations and their environment. 
It is well-suited to find weak signals, that might be otherwise overlooked, and en-
courages a proactive and cost-effective management of diseases. In pharmacological 
evaluation, deep learning and in silico data analyses offer alternative solutions to the 
reference methods (Cox regression) that rely on the comparison of a cohort with a 
control group. With the SCCS (Self Controlled Case Series) algorithms, the assessment 
of secondary effects is possible at the scale of the individual, by comparing the patient 
at the time an adverse effect occurs with the time period that preceded it. The work 
needed to homogenise the cohort is also reduced to a minimum. Such an approach 
proved useful in France for the withdrawal of the antidiabetic drug pioglitazone. 

In silico studies are not only expected to evaluate solutions that analyse data but 
could also help in their development. The GAN (Generative Adversarial Network) 
makes it possible to complete a system of incomplete data: a system generates the mis-
sing data, whose relevance is assessed by a “rival” network. This kind of functioning of 
networks is approaching human creativity... 

Today, genetic analysis of oncological markers offers a striking example of the 
complementarity between supervised and unsupervised learning approaches, their 
strengths and their limitations. Genome sequencing of cancers requires huge power 
for data analysis and storage: it takes between 10 gigabytes and several terabytes to 
store a single genome. Data modeling with hidden Markov chains allows for genome 
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annotation and, for example, the determination of coding regions. It constitutes an 
approach of unsupervised learning that is flexible and well-suited to reconstruct the 
history of a cancer in terms of  genomic alterations. It is also possible to track some 
of the processes that are involved, such as smoking, sun exposure, etc. thanks to the 
technology of matrix factorisation comparable to those used by video platforms to 
adjust their content in a personalised manner. This unsupervised learning approach 
does not prevent the use of supervised learning, for example with the aim of testing 
whether a profile predicts tumor recurrence. This classification approach nevertheless 
suffers from the discrepancy between the large volume of data per individual and the 
limited number of individuals characterised: its performance is poor in comparison to 
models that solely rely on clinical data.

AI and health in France 

The Villani report was made public in 2018 and it is an important date for AI 
in health in France. Its writing occured in a context of mistrust toward robotics 
in general, and responded to the concern of ensuring a harmonious economic 
and academic development of the discipline. Akin to the launch of CNIL (French 
National Commission on Informatics and Liberty) in the 70s, an emphasis on the 
ethical use of data and transparency of algorithms as well as the use of «open 
source» softwares is advocated in order to overcome the public technophobia 
and converge with the European framework (GDRP, General Data Protection Re-
gulation). Two requisits are essential: 

•• The need to boost the economic and industrial aspect in order to facilitate  
	 the implementation of relevant and sustainable initiatives in the long-term;
•• The necessity to  group public health data that are already huge into a single  

	 centralised system (table 1).

The top-down logic for health data grouping and the integration of the private sector 
are notably based on the Israeli model, i.e. that of a rich and dynamic ecosystem that va-
lues data. The choice of centralisation is anchored in the French practices and history, in 
contrast to the choices made at the same time by Germany, and interoperability of the two 
neighboring countries is not currently envisioned. 

The launch of the PRAIRIE institute (PaRis Artificial Intelligence Research InstitutE), 
supported by a number of prestigious universities and institutions, corresponds to the 
need to develop some of the skills that might not always be technical, but that also corres-
pond to the «soft skills» needed in AI engineering. This approach is highly relevant to AI in 
health where human interoperability, application design and user experience are essential. 
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Databases Types of data Organisation

SNIIRAM  
(national system 
of information)

•• 15 thematic databases with aggre-
gated data (datamarts) oriented toward a 
particular purpose: monitoring of medical 
expenses (Damir), analysis of the private 
care supply, biology, pharmacy, medical 
devices, private institutions; 
•• general sample of beneficiaries (EGB), 

with 1/97th of the population: the EGB 
enables the performance of longitudinal 
studies and analysis of health trajectories 
of approx. 660,000 beneficiaries regarding 
public hospitals as well as private care; 
•• database of individual data of benefi-

ciaries (DCIR) for studies regarding health-
care expenditures

Cnam

Cépi-DC National statistics on medical causes  
of death             

Inserm/Insee

PMSI  
(Program  
of medicalisation 
of information 
systems)

Systematic collection of minimal adminis-
trative and medical data that are used pri-
marily to finance healthcare facilities (acti-
vity based pricing) and for the organisation 
of healthcare (planning)

Hospitals

Table 1. The main French databases and organisations that 
constitute the national health data system
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The most spectacular announcement was the creation of a National Health Data 
Hub, under a shared public/private governance and proposed to be quickly operative 
(from 2019). However, political and legal constraints have proven insurmountable: 
the strict standards of the CNIL (French National Commission on Informatics and 
Liberty) regarding data anonymisation required the use of a foreign service provider, 
Microsoft, rather than an French partner that would be new to health data manage-
ment. This use has been challenged by a decree of the Council of State ... Because 
of these hesitations, the top-down logic was substituted with a bottom-up approach 
and the launching of regional database initiatives, including: the West Data hub: the 
first health database in France that emanated from the Health cooperation group 
(GSC) HUGO (including the University Hospital of Nantes, Angers and Ancenis); the 
«Entrepot des Données de Santé» (EDS) from Assistance Publique-Hopitaux de Paris 
(AP-HP).

Finally, AI and its integration into medical practive are also a concern to the Natio-
nal High Authority of Health (HAS). This authority issued a standard for the evalua-
tion of medical devices with artificial intelligence in 2020, an initiative aimed to give 
a more precise and relevant legal framework for manufacturers of health devices in 
France. The initial step of validation of this line of products will remain dependent on 
the European (CE) marking, but the French HAS intends to maintain its evaluation 
of this family of medical devices, in order to improve knowledge and transparency of 
this technology.

The author would like to thank Harold Mouchere for his precious comments.
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Principles and applications of AI

by Harold Mouchère
University of Nantes, 

Laboratoire des Sciences du Numérique de Nantes 

Artificial intelligence (AI) covers many concepts. This chapter is focused on one part of 
this large family of algorithms and approaches: deep neural networks. Any interested 
readers can refer to [1] for further reading

Basic Principles of deep neural networks

There are many architectures for neural networks, but they all have two things 
in common: their basic building block is the formal neuron and the gradient des-
cent algorithm is used for learning. We will explain these fundamental notions 
and we will define modern architectures: convolutional networks and recurrent 
networks.
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couches  successives,  chaque  couche  projetant  la  donnée  d’entrée  dans  un  nouvel  espace  de
représentation. Il s’agit alors d’un Perceptron Multi-Couche (Multi Layer Perceptron, MLP, en
anglais). Comme le montre la  Figure 3, un MLP est constitué d’une couche d’entrée (le vecteur
X des entrées), d’une ou plusieurs couches cachées et enfin de la couche de sortie, dite couche de
décision. Ces différentes couches sont complètement connectées, c’est à dire que chaque neurone
est connecté à tous les neurones de la couche précédente avec un poids. La couche de décision
finale peut être considérée comme un ensemble de séparateurs linéaires à deux classes : chaque
neurone tente de séparer sa classe de toutes les autres. Si la fonction d’activation utilisée dans les
neurones des couches cachée est non-linéaire alors le nouvel espace de représentation est comme
plié ou déplié et cette nouvelle topologie des données peut permettre à la couche suivante de
résoudre  le  problème de façon linéaire.  C’est  ce  changement  d’espace  de  représentation  des
données qui fait la force du MLP et des autres types de réseaux de neurones.

Le MLP est un approximateur universel, c’est à dire qu’avec suffisamment de neurones cachées,
n’importe  quelle  fonction  peut  être  approchée  avec  un  degré  de  précision  défini.  Cette
architecture  aurait  donc  du  être  suffisante  pour  résoudre  tous  les  problèmes  modernes.
Néanmoins elle soufre de deux défauts. Le premier est la complexité des connections. En effet le
nombre de connexion (et donc de paramètres à apprendre) augmente de façon polynomial avec le
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La fonction de coût utilisée doit correspondre au problème qui cherche à être résolu. Pour des
problématique de régression une simple erreur quadratique moyenne est généralement utilisée.
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Le neurone formel peut donc être résumé à une simple équation :y=f (v ( x ) ). La  Figure 2 donne

une  représentation  de  cette  fonction  pour  un  problème en  2  dimensions :  (x1,x2)  sont  les  2

caractéristiques  et  la  ligne  d’équationv ( x )=w1 x1+w2 x2+w3=0 représente  le  frontière de

décision. Dans demi-plan positif (où  v ( x )>0) la sortie du neurone sera 1 et de l’autre 0.  Dans

l’exemple de la  Figure 2 nous cherchons à séparer les lettres ‘a’ des lettres ‘A’ manuscrites. Les
caractéristiques x1 et x2 pourraient être la largeur et la hauteur de échantillons. Dans la figure de
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Un  neurone  seul  ne  permet  de  résoudre  que  les  problèmes  linéairement  séparables  et  des
problèmes à plusieurs classes. Dans les solutions plus complexes les neurones sont organisés en

Figure 2: Séparateur linéaire pour 2 problèmes : à gauche un problème linéairement 
séparable, à droite un problème non linéairement séparable.

Figure 3: Le perceptron multicouche : chaque neurone est connecté à tous les neurones de la couche précédente.

Principe  de  fonctionnement  et
applications
L’« Intelligence  Artificielle »  est  un terme qui  recouvre  de  nombreux concepts.  Ce chapitre  se
focalisera  sur  une  partie  de  cette  grande famille  d’algorithmes  et  d’approches :  les  réseaux de
neurones  profonds.  L’objectif  ici  est  d’expliquer  les  principes  généraux  permettant  de  bien
comprendre les concepts utilisés dans les chapitres suivants. Le lecteur intéressé pourra se référer à
des ouvrages dédiés comme [1].

 A) Principe de base des réseaux profonds

Il existe de nombreuse architectures de réseaux de neurones dont certaines seront présentée dans
la  section  suivante,  mais  elle  ont  toute  en commun deux choses :  leur  brique de  base  est  le
neurone artificiel et l’algorithme de la descente de gradient est utilisé pour l’apprentissage. Une
fois ces fondamentaux expliqués nous définirons les architectures plus modernes : les réseaux
convolutifs et les réseaux récurrents.

I. Du neurone isolé au perceptron multi-couche

Dès les années 50 les chercheurs en cybernétique tentaient de reproduire le comportement d’un
neurone biologique : la cellule est stimulée via ses dendrites, lorsque la stimulation est suffisante
une  nouvelle  simulation  est  propagée  via  son  unique  axone.  Le  neurone  artificiel  moderne
ressemble encore à celui proposé par Rosenblatt en 1957, schématisé dans la  Figure 1.

Le neurone formel est constitué de n entrées numérotée de 1 à n. Ces entrées peuvent être des
caractéristiques extraites de la forme à reconnaître. Chaque entrée est pondérée par un poids wi.
Le « corps » du neurone réalise la combinaison linéaire des ces entrées pondérées par ces poids.
Une entrée supplémentaire, toujours fixée à la valeur 1, permet d’ajouter un biais à cette somme

appelée fonction potentielle v ( x )=∑
1

n

wi xi+wn+1. Ce potentiel est ensuite passé dans une fonction

d’activation qui réalise la décision. Différentes fonctions peuvent être utilisée en fonction de
l’usage du neurone formel. Commençons par une simple fonction signe qui rend 0 si l’entrée est
négative et 1 si l’entrée est positive.

Figure 1: Le neurone formel 
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From the isolated neuron to the multi-layered perceptron

Since the 1950s, researchers working in the field of cybernetics have tried to repro-
duce the behavior of a biological neuron. The modern artificial neuron still looks like 
the one proposed by Rosenblatt in 1957, as shown in figure 1.  

The formal neuron is made up of n inputs numbered from 1 to n. These inputs may 
be the extracted characteristics (automatically or not) from the shape that needs to 
be recognised. Each entry is associated with a weight wi. The «body» of the neuron 
performs a linear combination of these inputs with their respective weights. An addi-
tional supplementary input, always set at 1, allows the addition of a bias to the sum 
called the potential function   This potential then goes through an 
activation function that makes the decision. Different functions can be applied depen-
ding on the use of the formal neuron.

The formal neuron can therefore be summed up with a simple equation: y=f(v(x)). Fi-
gure 2 provides a representation of this function for a two-dimensional problem: (x1,x2) 
are the two characteristics and the equation v|x|=w1x1 + w2x2 + w3 =0 represents the 
decision boundary. The main difficulty consists in finding values for the coefficients (w1, 
w2, w3) that minimise the number of errors (the points on the wrong side of the line). 
For this, we use learning algorithms that we explain in the next section. 

A single neuron will only allow to solve problems that are linearly separable and in 
two classes. For more complex problems, it is possible to perform iterative projections 
of the data in different spaces with the aim of transforming the problem until it beco-
mes linearly separable. Each projection is done using a layer of neurons within a mul-
ti-layer perceptron (MLP). As shown in figure 3, an MLP is composed of an input layer 
(the X vector of entries), several hidden layers performing space permutations, and 
finally the output layer known as the decision layer. These different layers are com-
pletely connected, i.e. each neuron is connected to all the neurons of the former layer 
with a weight. The final decision layer can be seen as a set of linear separators with 
two classes: each neuron tries to separate its class from all the others. If the activation 
function used in the neurons of the hidden layers is not linear, then the new space of 
representation, called latent space, allows the next layer to solve the problem linearly. 
This change in space of representation constitutes a strength of neural networks. 

This architecture is limited by its complexity. Indeed, the number of connections 
(and therefore parameters to solve) increases with a polynomial order depending on 
the number of features analysed, the number of neurons in the hidden layers and the 
number of outputs. 
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Figure 1. The formal neuron: the inputs xi are weighted by wi, this potential 
v(x) is passed to the activation function leading to the output y.

Figure 2. A single neuron can be regarded as a linear separator: 2D example of 
a problem that is not lineairly separable.
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Machine learning 

The algorithms that allow to find the best weights from well-labelled examples qua-
lify as supervised learning. The expected input and output data pairs, labelled (Xk, 
Yk) constitute the basis for learning. By randomly using the examples one by one, it is 
possible to gradually estimate the best weights, following three steps: 

•• Calculate the output of the neural network for the C classes:
•• Estimate the error of the current configuration of weights W : J(W),
•• Modify the weights W to reduce this error

The algorithm used to carry out this learning is called stochastic gradient descent. 
In order to use this algorithm, it is necessary to first define a cost function J(W) that 
measures the amount of error committed by the network with the whole of the data: 

couches  successives,  chaque  couche  projetant  la  donnée  d’entrée  dans  un  nouvel  espace  de
représentation. Il s’agit alors d’un Perceptron Multi-Couche (Multi Layer Perceptron, MLP, en
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La fonction de coût utilisée doit correspondre au problème qui cherche à être résolu. Pour des
problématique de régression une simple erreur quadratique moyenne est généralement utilisée.
On  peut  aussi  chercher  à  approcher  une  densité  de  probabilité  avec  la  fonction  de  coût  de
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The cost function that is used must be adapted to the problem that we want to solve. 
In the case of regression, a simple mean of quadratic errors is usually used. One can also 
use an approach based on probability density using the Kullback-Leiber cost function. 
When the classifications analysed correspond to a number of outputs ycs with probabi-
lities adding up to 1, a cross entropy approach is generaly used: 

à 1 mais l’objectif yc pour chacune d’elles est soit 0 soit 1, on utilise généralement une entropie

croisée:

J
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 Il s’agit donc de trouver l’ensemble des poids W qui minimise la valeur de la fonction de coût
choisie sur l’ensemble de données d’apprentissage. Pour cela nous modifions la valeur des poids
du réseau dans le sens opposé au gradient du coût:

∆ W k=−η
𝜕𝜕 J

k

𝜕𝜕W

Ce calcul dépend de la fonction de coût utilisé, du choix de la fonction d’activation de chaque
neurone, des connexions entre ces neurones et d’un paramètre η appelé taux d’apprentissage. Si
ces calculs et leur implémentation étaient complexes il y a quelques années, il est maintenant
complètement transparent pour les utilisateurs des bibliothèques logicielles récentes.  Une des
difficulté de cet apprentissage est appelé la dispersion du gradient (gradient vanishing). À chaque
couche  du  réseau  la  quantité  de  gradient  se  disperse  dans  les  neurones  précédents,
proportionnellement à l’activation de chaque neurone et de la valeur de dérivée de la fonction
d’activation. C’est pourquoi les architectures avec de nombreuses couches utilisent des fonctions
linéaire par partie (Rectified Linear Unit, ReLU), qui sont non-linéaires mais avec une dérivée
très simple (1 sur R+¿ ¿, 0 sinon).

L’apprentissage d’un réseau est donc un processus itératif et stochastique. À chaque modification
des poids l’erreur diminue pour les exemples utilisés à cette itération. À force de rencontrer des
exemples différents les poids arrivent dans une configuration globalement intéressante. Il faut
savoir que la fonction de coût n’est pas une simple cuvette avec un seul minimum, mais une
surface  assez  chaotique  avec  plusieurs  minimums  locaux.  Il  existe  donc  plusieurs  stratégies
d’apprentissage  qui  permettent  d’explorer  cet  espace  et  d’augmenter  ses  chances  de  trouver
rapidement un minimum global.

Une  architecture  suffisamment  complexe  arrivera  toujours  à  minimiser  l’erreur  de  la  base
d’apprentissage. Il s’agit d’une situation de sur-apprentissage : les connaissances extraites ne sont
pas généralisable à de nouvelles données. Il est donc important de surveiller l’apprentissage en
mesurant la fonction de coût sur une seconde base, dite de validation. On peut alors détecter le
moment où les connaissances extraites de la base d’apprentissage ne sont plus généralisables aux
données de validation. 

III. Réseaux convolutifs et réseaux récurrents

La complexité des couches complètement connectées utilisées dans les MLP rendent impossible 
leur application directe sur des images qui font des entrées de trop grande dimension. La solution 
démocratisée par LeCun en 1998 [2] consiste à utiliser un réseau à convolution qui réduit 
énormément le nombre de paramètres. En effet, comme le montre la figure 4, un noyau de 
convolution, qui peut être vu comme un petit perceptron, est appliqué sur une petite portion de 
l’image. Le nombre de poids nécessaire pour ce calcul local est réduit car le neurone n’est pas 
connecté à toute l’image. Ce noyau est appliqué à l’identique à l’ensemble de l’image en le glissant 
suivant les lignes et les colonnes (opération de convolution). Avec un seul noyau et donc un seul jeu
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This calculation depends on the cost function used, the choice of the activation 
function of each neuron, the connections between the neurons and a parameter called 
the learning rate. A few years ago, these calculations and their implementation were 
complex, but they are now completely transparent for users of the latest software 
libraries. One potential pitfall of this learning strategy is called gradient vanishing. At 
each level, the quantity of gradient is dispersed in the preceding neurons. Using the 
Rectified Linear Unit (ReLu) reduces this effect.  

Convolutional Networks and recurrent networks

Because of the complexity of the fully connected layers, it is impossible to directly 
apply this to images that constitute an input that is too large. A solution popularised 
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L’algorithme utilisé pour réaliser cet apprentissage encore aujourd’hui est nommé Descente de
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by LeCun in 1998 [2] is to use a convolutional network that enormously reduces the 
number of parameters. As shown in figure 4, a convolution kernel, which can be 
seen as a small perceptron, is applied on a small portion of the image. The number 
of weights necessary for this local calculation is reduced because the neuron is not 
connected to the whole image. This kernel is applied to all parts of the image by 
sliding it along the lines and columns (the convolution step). With a single kernel 
and a reduced set of weights, it becomes possible to extract local information on the 
whole image. One can in parallel apply several tens of kernels, each one extracting 
a local characteristic from the image. Multiple convolution layers are then stacked, 
each producing new features used as input for the following layer. The correspon-
ding maps can be reduced by local aggregations (Sum-pooling or max-pooling ). 
Thus, the successive layers extract higher level information, with less complexity. 
A fully connected final layer allows these characteristics to be used for the final 
decision. Learning of these convolutional networks is done exactly as explained 
above, but they take advantage of sharing weights within the convolutional layers 
to quickly learn local structures. Their implementation is also highly parallelisable, 
and using GPU cards facilitates their use.

Convolutional networks were created to handle 2D inputs (images), but their use has 
been extended to volumes (3D convolutions) and sequences (2D + t or 3D + t). Ne-
vertheless, analysing a sequence sometimes requires taking into account a long period. 
Recurrent networks allow for propagation of information along the sequence. 

A recurrent network also uses the principle of convolution because the same neuron is 
applied along the input signal. But in addition to only seeing a portion of this signal, the 
activation of the neuron is calculated by using the output of the neuron(s) at the pre-
vious step. Several formulations of recurrent neurons have been proposed: GRU (Gate 
Recurrent Unit) and LSTM (Long Short Term Memory). 

Recurrent networks can be used for different tasks, classifying sequences being the 
simplest: the network is a single extractor of characteristics that feeds a fully connected 
final decision layer. The recurrent networks also enable making a sequence of decisions, 
for example suited for sequential tasks, such as automatic language translation.  

Example of application in gastroenterology

Deep networks are used for multiple applications in the medical field [3]. We have 
selected an application in gastroenterology [4] for the detection and classification of 
pathological images obtained from capsule endoscopy in patients with Crohn’s disease. 
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Figure 3. A multi-layer percepton (MLP). Each neuron is connected to all neu-
rons of the former layer.

Figure 4. Convolution network. A.) a 3x3 convolution applied to a 2D image. 
B.) A complete simplified network: a 2D image as input, 2 convolution layers, 
1 pooling layer and a completely connected decision layer. 
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It was first necessary to collect and annotate the images (63 patients, 3498 images) 
for different kinds of lesions (6 types of lesions) and non-pathological images. The first 
difficulty comes from labelling. Several lesions may appear on an image (1.2 per image 
on average). The data have been labelled by 3 experts, and in more than 15% of the 
images, one of the experts did not agree (consensus by voting). The proportion of the 
different classes is also a challenge because learning is stochastic and works best when 
the classes are balanced (which is rarely the case). After agreement, 60% of images are 
not pathological and not all lesions are detected at the same frequency (from 5.8% for 
stenoses to 14.6% for ulcers<10mm). The database may therefore be used for detection 
(2 levels) or identification of a lesion (7 classes). 

Several architectures have been tested among the «on shelf» solutions: ResNet and 
VGG, which are the networks most often used in the image analysis community. For 
example VGG19 [5] uses a 224 x 224 image as input and it is composed of 16 layers 
of convolution (from 64 to 512 kernels of 3 x 3 pixels), interspersed with five layers of 
max-pooling for local aggregation of the extracted information. The last layer is passed 
through three fully connected layers, with 4096 neurons in the first two, the last layer 
doing the classification (the 2 or 7 classes of our problem). There are approximately 140 
million parameters to learn. 

The evaluation was made by cross-validation so as not to be dependent on data label-
ling during the learning-validation-test. Considering the problem of detection of patho-
logical images, the best system (ResNet34) obtains an average performance of 94.56% 
on the 5 validations and an area under the curve ROC of 98.23%. 

Tomorrow’s challenges  

To date, the approaches that proved useful in their various application fields are 
supervised systems, that is to say those that use data labelled by human experts for a 
dedicated task. The constitution of large databases (public or private) therefore makes 
it possible to tackle different applications. Ongoing reflections regarding data proper-
ty and confidentiality, especially medical data, are therefore crucial points. 

In parallel, AI researchers aim to reduce the amount of labelled data necessary for 
learning. Two solutions have emerged in recent years. The first solution is unsuper-
vised learning, or at least weakly supervised learning, and consists of providing raw 
unlabelled data to the network, to let it discover a latent space of reduced dimen-
sion that could be useful for other tasks. The transfer of knowledge is pursuing the 
same goal: building a representation space using a similar problem for which a large 
amount of data is available. 
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With the popularisation of its use, the user acceptability of decisions made by AI is 
an essential problem, especially in the medical field. This problem is often addressed 
by the creation of explainable AI, that would be able to convince the user, expert or 
not, of the correctness of the decision. One of the paths explored for deep networks, 
which are regarded as black boxes, is to use the attention process, in order to be able 
to delineate the portion or structure that allowed to make the decision from the input 
signal.
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AI and upper digestive tract :
Revolution is coming!

by Emmanuel Coron 1 & Gabriel Rahmi 2

1 Institute of diseases of the digestive system,  
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2 Georges Pompidou Hospital, AP-HP ;  
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On first instance, AI seems more advanced for the small intestine and the colon, for 
different reasons. The interest of automatic recognition of lesions in capsule endos-
copy is obvious and led to precursor studies and applications. Likewise, better detec-
tion of colonic polyps leads to a reduction in the risk of colorectal cancer and better 
differentiation between adenomas and hyperplastic polyps, permitting the adoption 
of a resect-and-discard strategy that has a major benefit in terms of cost-effectiveness. 
Thanks to these economic opportunities, small intestinal and colonic lesions were 
the first to motivate the interest of academic and industrial researchers and start the 
application of AI in  endoscopy. The relatively homogeneous nature of the lesions to 
recognise has also probably facilitated the obtention of the initial impressive results 
that were reported in the first published studies.
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Nevertheless, the upper digestive tract has witnessed several developments in AI. 
There are also huge expected benefits from its application. Upper digestive cancers 
are common and have dire prognosis, which requires their detection at an early 
stage in oder to increase the chances of applying curative approaches, or at least ob-
taining prolonged survival in these patients. When detected early, the survival rates 
in patients with upper digestive cancers are at more than 90% [2].  

Integrating AI in the context of rapid progress of endoscopic techniques 
and in real life?

Endoscopic techniques are quickly evolving and the successive generation of 
optical lenses or digital chromoscopy (Blue Light Imaging [BLI], Linked-Colour 
Imaging [LCI, Narrow Band Imaging [NBI]) unveil the process of carcinogenesis 
at its earliest stages. One of the best examples is the visualisation of Intrapapillary 
capillary loops [IPCL] in the oesophageal squamous mucosa, whose appearance 
changes through the different stages of dysplasia and mucosal invasion [3]. The 
challenge is not so much to track these anomalies, but rather to interpret them 
with sufficient expertise, as was recently reminded by the European Society of 
Digestive Endoscopy (ESGE) [4]. Similarly, various precancerous lesions are iden-
tifiable in Barrett’s mucosa using optical lenses and optical or digital dyes. Reco-
gnising the different subtypes of lesions is difficult. It then becomes obvious that 
the main difficulty is not so much to master a technique such as submucosal dis-
section, but rather to be able to select the lesions that are the best candidates for 
this treatment and to properly delineate the margins and the risk of deep mucosal 
infiltration before this interventional procedure is proposed. There is a glaring 
difference between the Western world and countries in Asia, where the careful use 
of innovative optical diagnostic tools has enabled a reduction in the mortality from 
upper gastrointestinal cancers [5-7]. 

The complex learning of endoscopic semiology with these new tools should not 
lead us to forget that, in the majority of centers in the world («in real life»), en-
doscopists are not experts and they use a simple approach with white light and 
endoscopes that are not equipped with optical zoom. Moreover, the variety of 
«basal» lesions that can be found in the oesophagus or the stomach complicates 
automatic recognition with AI programs. In fact, an important issue is to simul-
taneously avoid missing risky lesions identified during screening and to facilitate 
the characterisation of complex lesions that may require expert intervention. AI 
has already demonstrated its ability to identify microstructures and quantify archi-
tectural patterns at the pixel level within an image, i.e. at a level that is undetec-
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table by the human eye. This superiority is further accentuated by the robustness 
of computers, that are insensitive to fatigue, stress or boredom caused by repeti-
tive procedures.

Applications of AI in oesophageal pathology

Barrett’s oesophagus

Barrett’s oesophagus (BE) presents a particular difficulty. Dysplasia may be present 
as a thickened or flat area, with architectural irregularity of the mucosa or its micro-
vessels, a fact that complicates the precise delineation of the lesions. BE is rare in Asian 
countries, and therefore no Chinese or Japanese groups working on AI have worked 
on it yet. However, as is often the case in endoscopic work on BE, the Dutch have 
played a pioneering role [9,10]. The GastroNet portal, emanating from the consortium 
ARGOS, is a large international database that has helped to group and sort 494,364 
endoscopic images, 1,544 of which are  from dysplastic and non-dyplastic BE. The AI 
system that was then set-up was validated with two different datasets each including 
160 patients. The performance of the algorithm was compared with that of a panel 
of 53 international endoscopists, all of whom were beaten by AI, as shown in a study 
based on a retrospective analysis of the evaluated images [9]. This algorithm was then 
incorporated into a real-time video endoscopy system in a pilot study of 20 patients 
(n=10 dysplastic BE vs n=10 non-dysplastic BE). The comparison of AI and the human 
eye was only based on white light images, according to a standardised protocol used 
for the exploration of BE. From the distal portion to the proximal portion of the BE, 
the endoscope was stopped every 2 cm, and three images were registered by the en-
doscopist at each level and analysed by the AI system. This strategy permitted the eva-
luation of the reproducibility of the predictions made by AI for a given segment, and 
to see whether an analysis combining the different levels would improve the system’s 
performance. In addition to identifying areas of possible dysplasia, AI allowed for the 
contouring of the area and thus helped the endoscopist to simultaneously perform tar-
geted biopsies or an endoscopic resection. The system reached a concordance of 75% 
between the 3 images at each level. Image analysis reached a diagnostic performance 
of 84%, sensitivity of 76% and specificity of 86%. When the system identified an image 
with a high confidence index, the corresponding values reached 91%. Overall, the 
system detected 9 patients out of 10 that the endoscopist had identified as «dysplatic 
BE». The mucosectomy specimen obtained from the one patient «missed»  by AI did 
however only include non-dysplastic Barrett’s mucosa, raising the problem of the gold 
standard analysis. In this pilot study, the AI system was very fast, with a delay of 0.2s 
and 0.3s for identifying and contouring potentially dysplastic lesions. This system is 
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therefore extremely promising and it is currently being evaluated in a prospective 
international study  (figure 1).

Squamous cell carcinoma and AI 

The detection of oesophageal squamous cell carcinoma (OSCC) is another im-
portant issue, due to the high prevalence of this cancer in some parts of the world 
and its dire prognosis. The study by Guo et al. [11] examined the possibility of de-
tecting superficial OSCC by AI combined with Narrow band imaging (NBI) (figure 
2). This Chinese AI system was trained to recognise the corresponding images from 
6,473 images of OSCC and non-dysplastic oesophageal mucosa. The first dataset 
used for validation included OSCC images (n=1480) vs diverse images (n=5191) 
including normal mucosa, oesophagitis, heterotrophy of gastric mucosa, submucosal 
tumor and even oesophageal varices. The majority of lesions were flat or slightly 
depressed, but relatively large in size (34 mm on average). In this dataset, the sen-
sitivity reached 98% and specificity 95%. Of course, a potential bias is related to the 
choice of images analysed by the AI system. For this reason, a second dataset based 
on videos (n=27 without zoom and n=20 with zoom) was also tested. Irrespective 
of the use of zoom, the lesion was detected with full sensitivity of 100% (using 
one or several images). The analysis by image showed that the performance were 
significantly higher using images with zoom (sensitivity 96.1%) compared to those 
made without zoom (sensitivity 60.8%). According to the authors, an increased risk 
of artifacts was produced by movement in the absence of zoom. In a last validation 
set comprised of 33 cases, the entire video (non-filtered, 80 seconds in length on 
average) was analysed by the system. In this last set, the image and patient speci-
ficity reached 99.9% and 90.9%, respectively. This study is iconic because, despite 
many potential biases (single center study, the use of selected images and videos), 
it addressed highly heterogeneous lesions, either OSCC or controls. In addition, it is 
one of the first to integrate the approach of chromoscopy combined with zoom, in 
this case for the analysis of IPCL. This study therefore demonstrates that AI is able 
to identify hard-to-interpret images, at least for European endoscopists.

Applications of AI in gastric pathology

In the stomach, most studies to date have examined the possibility of detecting 
early stages of cancer with white light. The Chinese multicenter study published 
by Luo et al. [12] aimed to set up a system called GRAIDS (Gastrointestinal Artifi-
cial Intelligence Diagnostic System). In this study, 1,036,496 images obtained from 
8,424 patients were used to develop and test GRAIDS. The initial phase consisted of 
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Figure 1. Barrett’s Oesophagus (BO) examined in white light without AI (A) 
and with the contribution of AI (B). The AI system shows the area suspected of 
malignant degeneration (black) and a preferential location to target for biopsy 
(red). The lateral bar provides an estimation of the confidence index for the 
prediction of neoplasia (in this case, 89%). 

A B
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Figure 2. Oesophageal Squamous Cell Carcinoma (OSCC) examined in white 
light without AI (A, B) and with the contribution of AI (C,D). The AI system 
indicates the area at risk and suggests where to perform a biopsy or resec-
tion (blue). Evaluation with the zoom mode (D) further increases the system’s 
performance, and might in the near future help to automatically estimate the 
depth of infiltration.  

A B

C D
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training the system, before a stage of intrinsic verification and internal validation. 
The second phase allowed for a first prospective assessment in a national hospital 
center, followed by a second prospective evaluation in five general hospitals. The 
performance of GRAIDS was compared to that of endoscopists with three different 
levels of expertise (expert, competent, in training). The diagnostic performance of 
GRAIDS was 93% in the setting of a national hospital center, similar to that measured 
in the five general hospitals (92-98 %). Importantly, this AI system had a sensitivity 
comparable to that of an expert endoscopist (94%), higher than that of a competent 
endoscopist (86%) or an endoscopist in training (72%). Rather than competing with 
the human eye, combining GRAIDS with human interpretation improved the sensi-
tivity of endoscopists for the detection of cancers, modestly for experts (98%) but in 
a greater manner for competent endoscopists (98 %) and endoscopists in training 
(96%). False positives (mucus, abnormalities of gastric surface related to gastric 
contraction) were easily identified with the human eye and therefore did not lead 
to excessive biopsies. The system is also quite fast (25 images analysed per second 
in video in real time), therefore allowing its use in clinical practice. It is important 
to note that this system also allowed for the identification of oesophageal cancer 
using white light, whose incidence in Europe is similar to that in China, making this 
approach an attractive alternative in a European cohort

Conclusions and perspectives 

The literature on artificial intelligence (AI) on the upper digestive tract is quickly 
evolving. The first meta-analyses, such as that by D’Arribas et al. that has brought 
together 19 studies with 1,116 patients (with almost 24,000 images) suffering from 
OSCC, cancer ocurring in Barrett’s mucosa or gastric cancer, are encouraging [1]. Ta-
king together these different cancers, AI had a sensitivity of 90%, specificity of 89%, 
positive predictive value of 87% and negative predictive value of 91% for the detection 
of lesions. This is suggestive of great future utility in clinical practice, keeping in mind 
that the studies at this stage are essentially pilot studies, performed using AI systems 
that will improve with time. 

In practice, the commercialisation of systems dedicated to the detection and soon, to 
the characterisation of lesions of the upper digestive tract, is imminent. It is however 
important to keep in mind that AI can only be a companion for the endoscopist, who 
remains the only judge that can thoroughly analyse the gastroduodenal mucosa, per-
form targeted biopsies or resections. AI will never identify atypical lesions or diagnos-
tic traps as well as an experienced endoscopist. It will also be necessary to overcome 
a number of ethical, regulatory and economic obstacles to the use of AI in routine 
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practice, and to continue to assess the benefits of this technology using methodologi-
cally sound studies
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AI applied to videocapsule endoscopy  
of the small bowel: State of the art and perspectives
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The indications for videocapsule endoscopy (VCE) of the small bowel (SB) are part 
of International recommendations for the exploration of unexplained digestive 
bleeding (UDB) and the suspicion of Crohn’s disease (CD). The SB-VCE is also in-
dicated in some cases of intestinal polyposis and refractory celiac disease. The gas-
troenterologists spend 30 to 120 minutes on examining and interpreting complete 
SB-VCE records consisting of tens of thousands of images. This step is tedious, often 
monotonous and demanding. It requires dedicated time schedules and sustained 
concentration. Recently, Beg et al. have shown that the performance of an observer 
declined after the examination of just one SB-VCE, eventhough experienced users  
reported an average of 3.4 examinations per session [1].  

It is becoming clear that artificial intelligence (AI) solutions will have a major im-
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pact in medicine, especially for imaging and digestive endoscopy, and in particular 
for SB-VCE given its time-consuming and tedious interpretation [2]. These solutions 
have already entered the market, and some are already available for colonoscopy and 
SB-VCE [2]. 

The present review examines the current data and the future perspectives of AI in 
SB-VCE, as well as potential obstacles to its full implementation. . 

The specificities of AI applied to VCE 

In conventional endoscopy, the operator maneuvers the endoscope according to 
what is observed on the screen. In this context, AI solutions help in the detection and 
characterisation of lesions, synchronously to human observation. The main technolo-
gical challenge of AI in this context is to display the results with accuracy and synchro-
nously, i.e. as soon as the images are captured (24-60 frames per second). 

AI applied to SB-VCE faces the opposite challenge. Delayed examination of SB-VCE 
images with respect to their capture is the rule, either when it is carried out by a hu-
man or by an AI solution. The time constraint on image processing is therefore not the 
main problem. On the other hand, the transit of the capsule along the digestive tract is 
out of the control of the operator; in the near future, AI will select a limited number of 
images to be analysed by the endoscopist (say 2%), while the 98% remaining images 
will not be read by the operator. In total, the main objective of AI in SB-VCE is to 
achieve high sensitivity for the detection of abnormalities while significantly reducing 
the time spent on reading (in connection to the issue of specificity and the number of 
"false positive" images that the operator will have to invalidate). This quest for high 
sensitivity primarily relies on machine learning (oriented by the choice of human ex-
perts), while the help with characterisation relies mostly on deep learning approaches 
(without the intervention of human experts)

Detection of lesions and abnormalities

The detection of lesions and abnormalities is the topic of Table 1 and Figure 1. 

Blood

Before the introduction of AI, the performances of a suspected blood indicator (SBI) 
were very sensitive (96%) but poorly specific (17% to 65%) [3].

Since then, Xing et al. proposed a method based on deep learning (DL) that is highly 
supervised with sensitivity, specificity and accuracy superior to 98% [4]. More recent-
ly, Aoki et al. have developed a less supervised algorithm, based on neural network 
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Figure 1. Examples of lesions detected by the artificial intelligence system Axa-
ro® (Augmented Endoscopy®, France) devoted to endoscopic videocapsules. 
The detected lesions are symbolised by a pictogram (vascular, inflammatory, tu-
moral...) with a degree of confidence for the diagnosis (percentage) displayed in 
the thumbnail. A) Angiectasia; B) aphthoid erosion; C) submucosal tumor.

A B

C



36 X. Dray,  A. Histace, R. Leenhardt

i D 

i

First author Target Number of Patients/Images Study Design Training/ Validation Images/video Performance

Xing X, 2018 Sang 30 patients 
1000 images

Retrospective Yes Still images Sensitivity: 98,5% 
Spécificité : 99,5%

Aoki T, 2020 Sang 41 patients 
49.191 images

Retrospective Yes Still images Sensitivity: 96,6% 
Specificity: 99,9%

Noya F, 2017 Angiectasias 36 patients 
1.648 images

Retrospective Yes Still images Sensitivity: 89,5% 
Specificity: 96,8%

Leenhardt R,2019 Angiectasias 408 patients 
1.200 images

Retrospective Yes Still images Sensitivity: 100% 
Specificity: 96%

Tsuboi A,2020 Angiectasias 48 patients 
10.488 images

Retrospective Yes Still images Sensitivity:   98,8% 
Specificity: 98,4%

Fan S, 2018 Ulcerations 144 patients 
21.160 images

Retrospective Yes Still images Sensitivity:  96,8% 
Specificity: 94,8%

Aoki T, 2019 Ulcerations 180 patients 
15.800 images 
16 patients

Retrospective Yes

Non

Still images

Videos

Sensitivity: 88,2% 
Specificity: 90,9% 
3 minutes reading *

Wang S, 2019 Ulcerations 1504 patients 
47.202 images

Retrospective Yes Still images Sensitivity: 89,7% 
Specificity: 90,5%

Klang E, 2020 Ulcerations 49 patients 
17.640 images

Retrospective Yes Still images Sensitivity: 96,8% 
Specificity: 96,6%

Saito H, 2020 Protruding lesions 385 patients 
48.091 images

Retrospective Yes Still images Sensitivity: 90,7% 
Specificity: 79,8%

Iakovidis D, 2014 Multiclass 251 patients 
1.370 images

Retrospective Yes Still images Sensitivity: 94,0% 
Specificity: 95,4%

Ding Z, 2019 Multiclass 6,970 patients  
113 millions images 

Retrospective Yes Videos Sensitivity: 99,9% 
Specificity: 97,0% 
6 minutes reading *

*Average interpretation time.

Table 1. An overview of the main recent studies on AI ap-
plied for the detection and/or characterisation of  
lesions and abnormalities in videocapsule endoscopy.
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First author Target Number of Patients/Images Study Design Training/ Validation Images/video Performance
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(NN) analysis of SB-VCE images with sensitivity of 96.6%, specificity of 99.9% and 
accuracy of 99.9% [5]. Although these results seem promising, they have all been ob-
tained using still images, and video analyses are still lacking, both for detection and 
characterisation (fresh blood, clots or melena, traces or massive hemorrhage).

Angiectasias

Angiectasias or angiodysplasias are the most common injuries seen in SB-VCE. As 
proof of concept, our team used an AI approach based on NN in our study, reaching 
sensitivity of 100% and specificity of 96% for their detection from still images [6]. In 
2020, Tsuboi et al. have developed an AI system based on a database of 189 videos of 
SB-VCE, with sensitivity of 98.8% and specificity of 98.4%. These promising results 
require validation with large prospective clinical trials [7].

Erosions and ulcers

The diversity of these lesions in terms of depth, size, shape and etiology constitutes a 
challenge for AI in SB-VCE. The AI solutions based on NN give excellent diagnostic perfor-
mance after assessment on still images [8]. In a pilot series on videos, including 16 SB-VCE 
with 37 images with loss of substance and 4 normal videos, the time required to interpret 
videos by experts with/without AI decreased from 12 to 3 minutes while the detection rate 
was unchanged (87% and 84%, respectively) [9]. Taken together, improvement in the 
detection of ulcerated lesions is still needed  for better assessement of videos. 

Protruding lesions

The team of Saito et al. collected 30,584 images of polyps/masses/tumors from 292 
patients, in order to develop an AI solution based on NN. The system was then tested 
on an independent batch of images, and showed a sensitivity of 90.7% and specificity 
of 79.8% [10]. While the proof of concept is imminent, there are currently no studies 
available on videos regarding the critical issue of the automated detection of protru-
ding lesions. Furthermore, it will likely be difficult to characterise some of the protru-
ding lesions that appear as variations of the norme (mucosal folds, phlebectasias, 
lymphangiectasia, chylous cysts, nodular lymphoid hyperplasia, Brunner’s glands...) 
from the various diseases, benign or malignant, of epithelial or submucosal origins. . 

Multiclass detection

In 2014, Iakovidis et al. proposed a method able to detect several types of lesions by 
classifying the images as abnormal. Instead of learning how to recognise different kinds 
of lesions, the method aims to distinguish an abnormal image from a normal one. In 
other words, "what is not normal is, by definition, abnormal" (eventhough a subsequent 
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risk is to then not be able to correctly categorise the anomaly) (Figure 2) [11]. A few 
years later, Ding et al. managed to reach the performance of a gastroenterologist in 
terms of detection of lesions and variations of normal mucosa (lymphangiectasias, red 
dots ...) by training a DL model with more than 100 million images of SB-VCE collected 
from 77 centers in China [12]. The false positive rate was only 3%. Noteworthily, the ave-
rage time spent on reading a video was 97 min with conventional analysis (surprisingly 
...) but only 6 min with the aid of AI [12].

Characterisation

Only few studies in the literature have reported using AI solutions for lesion charac-
terisation in SB-VCE. Our team has shown that, following the detection of angiectasias, 
their segmentation (the determination of the anatomical margins of the lesion) can be 
carried out by AI at the pixel scale, thus opening the way to the extraction of characteris-
tics, such as the lesion size, type, depth [6]. The main limitation of this approach is that 
it relies on databases with annotations of very high quality and on heavy calculations. .

Combined Multiclass detection and characterisation

By combining a "weakly supervised" approach for detection with different sub-neu-
ral networks for classification, Otani et al. have recently reported a solution with 
detection performance of 0.928 for ulcerations, 0.884 for vascular abnormalities and 
0.902 for protruding lesions, using still images [13]. 

Assessment of the quality of bowel preparation 

While recommended, the evaluation of the quality of bowel preparation by gas-
troenterologists with VCE remains poorly reproducible [14]. Two AI algorithms have 
shown that AI can produce a cleanliness score that is robust and reliable [14, 15]. A 
recent study from our team provides a proof of concept that a DL approach has a sen-
sitivity of about 90% for the ranking of videos compared to a consensus of experts, for 
the recognition of a badly prepared bowel (figure 3) [15].

Industrialisation

The first step forward was made in 2019 by the firm Ankon® (China), following the 
confirmation that an algorithm based on NN was able to detect abnormalities in SB-
VCE with performance equivalent to gastroenterologists in a large multicenter study 
(cited earlier), while considerably saving time spent on analysis (to about 6 minutes) 
[12]. The company Jinshan (distributing the capsule Omom®) has also marketed its 
solution in Asia. 
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Current limitations 

Several important limitations of current studies of AI in SB-VCE should be reco-
gnised. Firstly, these studies are retrospective. In addition, most datasets used for trai-
ning are based on selected images, leading to an inherent risk of overfitting. Studies 
with external validation are rare (or do not exist), most likely because the research 
teams that use these devices use different architectures of networks and images (diffe-
rent contrasts, resolutions and labels). Finally, some aspects are still barely addressed 
by AI researchers, such as the recognition of anatomical marks (pylorus, ileocecal 
valve) or the assessment of the size of the lesions.  

Priority needs 

Highly supervised NN should one day enable the current technologies to address 
the challenge of lesion classification in terms of diagnosis and etiology. However, this 
development is hampered by the poor diagnostic agreement between users of SB-
VCE, around 60% [16], probably due to inter-individual variations in the vocabulary 
used, the characterisation of lesions and their interpretation according to the clinical 
context. In the absence of a consensus for the reproducible interpretation of SB-VCE, 
machine learning is illusory. A European group has addressed this challenge by pro-
posing an expert consensus on the nomenclature, the description and the etiology of 
vascular, ulcerative and protruding lesions, depending on the indications of SB-VCE 
[17]. This a necessary step for the development of solid databases and the establish-
ment of «ground truth» necessary for machine learning.

Once these principles have been acquired, databases of better quality will be 
constructed allowing the application of active learning. This will not only allow to 
prospectively enrich these databases, but also to point out the errors of AI. 

Potential obstacles 

A number of potential obstacles to the development of AI solutions that we have 
listed in the text can be briefly mentioned, keeping in mind the ethical, economic and 
regulatory aspects of AI applied to endoscopy. First of all, knowledge is still lacking 
regarding the criteria that are gained by AI to perform any given technical task (detec-
tion, characterisation...). This lack of knowledge will not facilitate AI use in Medicine 
in general, and endoscopy and SB-VCE in particular. The responsibility of interpreting 
SB-VCE will continue to rest on Medical doctors, eventhough they will only see a 
small proportion of the captured images. These images will be archived and therefore 
it will be possible to re-examine them by experts. Until health authorities establish re-
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A

B

Figure 3. Representative images of endoscopic videocapsule and their use for 
analysing the quality of visualisation with the Axaro® AI system (Augmented 
Endoscopy, France): (a) adequate (b) inadequate. The original image is on 
the left and a heatmap is shown on the right, with visible areas in cold colours 
(blue) and poorly visible area in hot colours (red). The results are not given in 
the form of a heatmap (whose only interest here is to support the discussion) 
but as a proportion of dirty images out of the whole video for each quartile of 
the sequence. A percentage of lower than 21% is considered to reflect adequate 
preparation at the video scale [15].  
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gulatory principles for the use of AI solutions in Medicine (which are neither drugs nor 
devices), the doctor and the institution are in an unclear situation from a legal point of 
view, a situation that is likely to delay the adoption (and therefore the development and 
improvement) of these techniques. However, these improvements have far-reaching im-
plications, considering the current situation of medical demography, particularly in our 
specialty, where medical time is priceless and should be spent on « noble » tasks. One 
can wonder how confident patients (and the society) will be (and therefore whether 
they will authorise) a system that does not include a safety net with proofreading, es-
pecially in its early years (and with its first errors). Our group has started performing 
audits on doctors and patients regarding these issues. These issues will open up essential 
ethical considerations. Finally, the transfer of major technological developments made 
in Asia is not necessarily possible immediately in Western countries. Indeed, it is accom-
panied with complex issues of digital and economic sovereignty. 

Perspectives

The perspectives of AI development in SB-VCE include application of its use in the 
stomach, the colon, and panenteric systems (gastrointestinal or intestinal and colic 
capsules). If their interpretation becomes less cumbersome and more automated, it 
is likely that devices with multiple/panoramic heads will become the norm regarding 
the inspection of the small bowel.  Finally, these developments are expected to boost 
the market of videoendoscopic capsules, with more prescribed and interpreted exami-
nations. These examinations could eventually be performed at home, and one cannot 
exclude the possibility that in the future patients will download the videos taken of 
their digestive tract for online interpretation via secure platforms.  

Conclusion

Twenty years after its revolutionary inauguration in gastrointestinal endoscopy, the 
VCE is coming to a golden age thanks to the development of AI. Solutions for au-
tomatic detection are now readily available on the market. Prospective controlled 
trials performed by independent teams are still necessary before medical doctors 
can entirely rely on these solutions and significantly reduce their interpretation time 
while still being sure of excellent detection performance. When this first critical step 
is reached, the automatic characterisation (in terms of diagnosis and relevance) will 
be the next step. The process promises however to take much longer, because the re-
gulatory and ethical stakes are great, and in parallel VCE technology is following its 
own path, opening new fields of application (panenteric endoscopy, virtual chromo- 
endoscopy, active locomotion, treatment options) in which AI will play a role. 
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AI and pathology of the lower digestive tract

by Aymeric Becq
1  Center for digestive endoscopy, Saint-Antoine Hospital,  

APHP, Paris  
2 Institute of Intelligent Systems and Robotics, Paris Jussieu

Colonoscopy is the procedure of reference for the detection of precancerous colic polyps 
[1]. This screening procedure is effective but not perfect. The adenoma detection rate 
(ADR) is highly variable (7-53%) and the rate of missed polyps is 22% [2,3]. This poses 
the problem of interval cancers and their mortality, a problem directly related to ADR 
[3]. Facing these limitations, a challenge is to reduce inter-operator variability and 
optimise the prevention of colorectal cancer by colonoscopy. In this context, Artificial 
Intelligence (AI) represents a possible solution. In fact, there are two major points for 
which AI may be helpful:

•• Helping to detect polyps (Computer-Aided Detection, CADe). The objective is to  
	 increase the ADR;
•• Helping to characterise polyps (Computer-Aided Diagnosis, CADx). The objective  

	 is to reduce the unnecessary resection of hyperplastic polyps (HP). 
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The European recommendations issued by the ESGE in 2019 carefully mention AI as 
a potential tool for detection and characterisation, provided that high precision and 
reproducibility can be demonstrated in good quality multicenter trials. The difficul-
ties and the risks presented by a wide-scale implementation of colonoscopy are also 
mentioned: a decrease in the number of endoscopists, greater confidence in AI, poor 
representation of ground truth in the databases that are used to train AI algorithms, 
hacking [4] ... 

Polyp Detection 

Regarding polyp detection in the colon, AI must be sensitive, produce few false posi-
tives, and operate in real time. In order to limit the risk of not detecting a polyp, that 
is to say in order to be sensitive enough, the detection threshold used by the algorithm 
is decreased at the expense of specificity, with more potential false positives. This is 
desirable, as long as the gain in sensitivity does not greatly increase the number of 
false positives. 

The use of deep learning approaches, such as Convolutional Neural Networks (CNN) 
became possible thanks to the increased power of processors that are required to ana-
lyse the large datasets necessary to set up AI algorithms. They are trained to identify 
polyps vs non-polyp lesions in a large database without researcher guidance. 

Over the last few years, several AI algorithms were conceived, allowing the evalua-
tion of images and videos, followed by real time videos. Among the existing systems, 
it is possible to mention the GI-Genius (Medtronic), Wision AI (Shanghai Wision AI 
Co., Ltd.) and CAD-EYE (Fujifilm). The use is intended to be simple and pragmatic. 
Following the «plug and play» principle, the device works directly once it is connected 
and switched on. Two signals warn the endoscopist when a polyp has been identified: 
a visual signal on the screen, and an (optional) sound signal. During a colonoscopy, 25 
to 60 images/second scroll on the screen. Thus, in order to work in real time, AI must 
recognise and display the signal in a time frame of 1/25 to 1/60th of second (40 ms), 
requiring fast and powerful processors. 

Table 1 summarises the main studies published on this subject to date. The first in 
vivo study, published in 2019, was a prospective study based on 55 colonoscopies and 
showed an ADR of 29.1% with AI vs 30.9% with an endoscopist. The ADRs were there-
fore considered comparable, suggesting that the AI algorithm could be improved, but 
also showing that real time detection is feasible [5].The first prospective randomised 
study, published in 2019 by Wang et al., compared the performance of an AI system 
(Wision-AI) in 1,130 patients with an indication of colonoscopy. ADR was greater with 
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AI (29% vs 20%; p <0.001). The rate was notably higher for diminutive polyps (70.6% 
vs 63.5%; p<0.001). The limitations of the study were the lack of generalisability 
(lack of selection of patients, an average age of 50 years, a study conducted in one 
country: China, where the prevalence of colorectal cancer is lower). The polyps that 
were most often detected by AI were diminutive and/or hyperplastic, raising ques-
tions regarding the utility of AI. The first study carried out with an AI system with 
a CE marking appeared in 2020. It was a randomised controlled multicenter clinical 
study that included 685 patients with a screening colonoscopy. The ADR was 54.8% 
with AI vs 40.4% for control (RR=1.3 [CI: 1.14-1.45]). AI enabled the detection of more 
adenomas by colonoscopy, and more adenomas of <5 mm and between 6 and 9 mm in 
size [6]. A meta-analysis published in 2020 brought together six studies on AI-assisted 
detection and showed a global sensitivity of 95.0% [CI95 : 91.0-97.0%] and specificity 
of 88.0% [CI95: 58.0-99.0 %] [7]. 

Altogether, in 2021, the problem of detection of polyps by AI can be considered sol-
ved. The next steps are, on one hand, the clinical validation with other randomised 
trials to examine the impact of AI on the ADR, and on the other hand, the administra-
tive steps for the marketing of the different systems. 

Characterisation of polyps

Characterisation of polyps is the second aim of AI, but it is different from the first 
and does not target the same endoscopists. Indeed, it will generate greater interest 
among expert endoscopists than its use for detection. The interest is also greater de-
pending on the country and continent, Japanese being for example more interested in 
aspects related to characterisation. 

The ASGE (American Society for Gastrointestinal Endoscopy) Technology Com-
mittee has issued and validated thresholds considered acceptable for the use of new 
technologies allowing real time histology of diminutive polyps during colonoscopy: 
the PIVI criteria (Preservation and Incorporation of Valuable endoscopic Innovation). 
Before a technology can be used as a guide in the decision of whether or not to resect 
rectosigmoid polyps that are suspected of being hyperplastic and <5 mm, the nega-
tive predictive value for adenomatous histology should be of at least 90% [8]. This 
threshold should be considered as a reference for the assessement of the performance 
of AI in predicting the histology of colonic polyps.

There are two types of systems. Systems that scan images obtained from classical 
colonoscopy, and systems that analyse zoomed images (endocytoscopy). The existing 
systems include the AI4GI, CAD-EYE (Fujifilm) and EndoBRAIN® (endocytoscopy) 
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systems. Table 2 summarises the main studies published on this subject to date. 

A 2019 study published by Bryne et al. constitutes a reference regarding colonoscopy 
images. It is based on deep learning analysis of more than 60,000 images of normal 
mucosa/colonic polyps selected from 223 videos, using Narrow Band Imaging (NBI), 
in near vision and close/very close mucosa (Near focus technology, Olympus, Tokyo, 
Japan). The system displayed a level of confidence for the diagnosis of normal muco-
sa, hyperplastic polyps (NICE 1) or adenoma (NICE2). In an independent examination 
of 125 videos of polyps, lasting 10-20 seconds, the performance of the system was com-
pared to that of pathological analysis, and was found to go beyond the PIVI criteria 
with a sensitivity of 98%, specificity of 83%, and diagnostic accuracy of 94% [9]. 

Endocytoscopy allows the in vivo examination of the morphology of the superficial 
cell layer of the tissue and their nuclei using high-magnification (X520) after methyle-
ne blue (1%) and crystal violet (0.05%) staining. The combination with NBI allows the 
added inspection of microvessels. A system called EndoBRAIN® has been evaluated in 
a pilot study published in 2015 on images of polyps of <10 mm, showing a sensitivity 
of 92.0%, specificity of 79.5% and accuracy of 89.2% for the differentiation between 
neoplastic and non-neoplastic polyps. The time required for analysis was 0.3 seconds 
and the performance was highly reproducible, similar to those by expert endoscopists 
and significantly better than endoscopists in training [10]. This system, based on deep 
learning of almost 70,000 images was further studied in a retrospective multicenter 
validation study that was published in 2020, before marketing in Japan [11]. The 
performance of AI was as follows. Images with staining: sensitivity 96.9%, specifi-
city 100% and accuracy 98.0%. Images taken with NBI: sensitivity 96.9%, specificity 
94.3% and accuracy 96.0%. The performance was superior to endoscopists in training, 
as well as expert endoscopists, regarding sensitivity. The negative predictive value for 
rectosigmoidal diminutive polyps was 100%, an interesting observation suggesting 
that the polyps suspected of being hyperplastic could be left untouched according to 
the PIVI thresholds. 

This study however presented a number of limitatons, such as the toxicity of 
methylene blue, the staining duration at diagnosis (73 seconds). The authors stated 
that virtual colouring endocystoscopy was acceptable, but that methylene blue stai-
ning may help to predict the degree of submucosal invasion. This remains however to 
be evaluated [11]. 

Finally, the meta-analysis published in 2020 that we mentioned earlier also brought 
together 18 studies (three of which were prospective studies) on AI-assisted histologi-
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cal prediction. Altogether, 7,680 images of polyps were examined and showed a total 
sensitivity of 92.3% [CI95: 88.8-94.9%] and specificity of 89.8% [CI95: 83.5 -93.0%]
[7]. Interestingly, among these studies, five used deep learning algorithms, with a 
global sensitivity of 94.7% and specificity of 91.7%. Also, the global sensitivity for the 
characterisation of diminutive polyps was 93.5% and the specificity was 90.8%. Final-
ly, AI was in general superior to non-expert endoscopists [7].  

Combined tasks

Some AI softwares can perform multiple tasks such as detection and characterisations. 
This is for example the case with the CAD EYE (Fujifilm®) system. This system is based 
on deep learning, with an algorithm that processes 60 images per second during real 
time analysis. A CE marking has been obtained in 2020. Detection is performed with LCI 
(Linked Colour Imaging) chromoendoscopy or in white light. Characterisation is perfor-
med with BLI (Blue Light imaging) chromoendoscopy, without image freezing or using 
zoom. The algorithm does not show a high level of confidence or precision. For neoplastic 
lesions, a yellow circle is displayed (adenomas and cancers). For hyperplastic lesions, a 
green circle appears (hyperplastic polyps and sessile serrated adenomas/polyps). Valida-
tion studies are in progress. 

Another interesting system is the ENDOANGEL system, developed by deep learning (neu-
ral networks). It aids in the detection and characterisation of polyps and performs quality 
monitoring in real time: recognition of the cecum, monitoring of withdrawal speed and 
assessment of the quality of preparation (Boston’s score). In a randomised study that 
included 704 patients, the ADR was higher with AI than without (odds ratio=2.30 [CI95 
1.40-3.77, p<0.001]). Withdrawal speed was significantly greater with AI (6.38+2.48 min 
vs 4.76+2.54 min; p<0.001) [12]. Regarding the evaluation of the cleanliness of the colon, 
another study based on image analysis showed an accuracy of 93.33%, higher than that of 
the endoscopist, with a precision of 80% on images with bubbles [13].

Conclusions

Today, AI is able to detect and characterise colonic polyps with high precision. The 
technology is ready: the equipment (computing power) and software (artificial intel-
ligence, neural networks) performances made clear progress over the past years. Va-
lidated algorithms for detection and for characterisation are now available in Europe 
and in Japan. That being said, the majority of polyps detected are diminutive, raising 
issues regarding the real clinical interest, and experience is lacking. In addition, the 
algorithms suffer from a number of limitations: the majority of the published studies 
have been carried out on images (instead of real-time videos) and used a limited 
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number of images of polyps for training and validation of the AI. In addition, human 
data were used to train AI, a situation that might have transferred some bias and 
could result in databases that are poorly representative of the general population. 
The resulting algorithm could then be biased. Similarly, the use of colonoscopies with 
an average ADR is unlikely to improve the performance of AI, and it is likely that a 
greater benefit will be gained from training driven by images of polyps missed by 
endoscopists. 

Lastly, more studies are needed to assess the effect of AI on ADR and, in the long term, 
the incidence of colorectal cancer, and to evaluate the ability of AI to detect large, flat 
polyps. The answer is expected in the near future ... 
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AI and intestinal inflammatory bowel diseases (IBD)

by Catherine Le Berre
Institute of Diseases of the Digestive System,  

Nantes University Hospital - Hôtel Dieu, Nantes 

Chronic intestinal inflammatory bowel diseases (IBD) are chronic diseases asso-
ciated with altered regulation of immunity in the digestive tract. In the case of ul-
cerative colitis (UC), the rectum and colon are exclusively altered, while Crohn’s 
disease (CD) can affect the entire digestive tract. There is currently no «gold 
standard» to diagnose IBD. Updated European recommendations issued in 2019 
indicate that the confirmation of the diagnosis is based on the convergence of 
clinical, biological, endoscopic, histological, and even radiological signs [1]. Seve-
ral medical examinations are therefore necessary for the initial diagnosis of IBD. 
Colonoscopy with multiple staged biopsies remains the examination performed 
on first intention. An upper gastrointestinal endoscopy is very often carried out 
at the same time.
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Exploration of the small intestine by entero-MRI or videocapsule endoscopy (VCE) is 
recommended for patients for which there is a strong clinical suspicion of CD despite 
having normal results for conventional endoscopic explorations, and it should be 
systematically performed in patients that are newly diagnosed with CD [1]. 

However, a significant number of gastroenterologists (36.9%) have no easy access 
to VCE, as shown in a recent Spanish survey [2], and it is well known that reading 
an entero-MRI is radiologist-dependent with great heterogeneity among centers in 
the quality of interpretation [3]. Regarding  conventional endoscopic examinations, 
a significant inter-observer variability was observed regarding the assessment of the 
severity of inflammation [4]. The medical management of IBD can therefore consi-
derably vary from one patient to another. 

In the last ten years, big data retrieved from large clinical trials and electronic health 
records, from biological collections, Omics databases (genomic, transcriptomic, me-
tabolomic, proteomic) were increasingly used in order to identify patient profiles of 
clinical relevance. By combining multiple types of information, Artificial Intelligence 
(AI) and «Machine Learning» could increase the diagnostic performance and help 
to predict the evolution of IBD, whose complex pathophysiology involves immunity, 
microbiota, genetics and environmental factors. It might thus help in the standardi-
sation of the medical management of patients with these diseases.

Applications of AI in the diagnosis and assessment  
of the severity of IBD

Diagnosis	

As discussed above, assessing the small-intestine is often difficult in newly dia-
gnosed patients or patients suspected of CD. Yet the damage of the proximal small 
bowel is associated with a significant risk of stenoses and subsequent multiple 
surgical interventions, with a potentially great impact on the prognosis and the-
rapeutic management. The time required to analyse a VCE (25-60 minutes) is an 
important limitation to the broad performance of this examination, combined with 
the fact that it requires sustained attention for the whole time the images are dis-
played (15-20 images per second). Many teams have therefore developed programs 
for the automatic detection of bowel lesions of CD by VCE, most of which have 
reached diagnostic precision of above 90% [5-7].
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With the emergence of «deep learning» and the powerful neural networks, 
pre-processing of data is almost not used anymore. Instead, most teams have ap-
plied weakly-supervised learning, where data are given to the algorithm without 
preprocessing but with an annotation regarding their pathological nature. The 
main interest of these neural networks is their simplicity of use, once they are de-
veloped, and their ability to self-improve. The team at the Nantes University Hos-
pital, in collaboration with LS2N, has recently developed its own neural network 
trained with a personal database named Crohn-IPI, composed of 1,628 normal 
images and 1,590 images of CD lesions, achieving an accuracy of 89.3%, sensitivity 
of 87.8% and specificity of 90.7% [8]. 

Machine Learning techniques have also been used for the semiautomatic inter-
pretation of entero-scanner or entero-MRI, based on parietal thickness, the dila-
tion of the loops of the small intestine, the luminal diameter, and the existence of 
stenoses, and they have proven effective for the identification of intestinal lesions 
with an accuracy comparable to that of expert radiologists [9,10]. 

Endoscopic and morphological examinations sometimes fail to distinguish 
between the two IBD phenotypes. It is however essential to accurately diagnose 
CD from UC, since this is of great importance for the choice of medical treatment, 
and especially surgical treatment, in particular when a total colectomy  is required 
with an ileo-anal anastomosis. The genetic characteristics of patients could aid in 
the phenotypic distinction. Currently, Genome-wide Assocation studies (GWAS) 
have identified several hundred loci associated with the risk of developing either 
CD or UC [11]. A recent technique of prioritisation based on machine learning 
recently identified 67 further gene candidates from a list of 16,390 genes [12]. In 
2018, an american team has developed an algorithm called probabilistic pathway 
score that is no longer solely based on known genes but also on gene interactions 
at the individual level, in order to efficiently distinguish patients with CD from 
those with UC [13]. 

Severity assessment 

Considering the relative subjectivity of endoscopic severity scores in UC (Mayo 
endoscopic sub-score, UCEIS), many teams have worked on developing algorithms 
based on deep learning in order to achieve an automatic stratification of the en-
doscopic lesions in these patients.  
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For example, a Japanese team has used a neural network to identify patients in 
endoscopic remission, as defined by a Mayo score of 0 or 0-1 with an area under 
the curve (AUROC) of 0.86 and 0.98, respectively, with a better performance in 
the rectum than in the rest of the colon [14]. An American team has also developed 
its own neural network enabling to distinguish the Mayo 0-1 patients (endoscopic 
remission) from Mayo 2-3 patients (moderate to severe activity) with an AUROC of 
0.966 [15]. Beyond distinguishing patients with remission from those with active 
disease, two teams have each developed an algorithm that defines the exact Mayo 
endoscopic subscore, with concordance between automated interpretation and hu-
man analysis of around 70% in both cases [16,17]. 

Eventhough it is still a matter of debate, histological healing is considered to 
be an important goal of medical treatment in patients with UC, necessitating the 
performance of biopsies during control endoscopy. Several teams have used deep 
learning in order to skip this step of pathological analysis based solely on endos-
copy. The neural network that has been developed by Takenaka et al. identified in 
time real patients in endoscopic remission (defined by a UCEIS score of 0) with 
a precision of 90.1%, and those in histological remission (defined by a Geboes 
score of <3) with an accuracy of 92.9% [18]. A Belgian team developed an algo-
rithm that defines a « red density » score from endoscopic images of patients with 
minimally-active to moderately-active UC, a score that turned out to be signifi-
cantly correlated with the Robarts histology index (r=0.74), the Mayo endoscopic 
subscore (r=0.76) and the UCEIS score (r=0.74) [19]. Another Japanese team has 
used endocytoscopy to develop a real time system helping to diagnose persistant 
histological inflammation (defined by a Geboes score higher than or equal to 3.1) 
with a sensitivity of 74%, specificity of 97%, accuracy of 91%, and above all perfect 
reproducibility (100%) [20]. 

All the studies that we previously cited have described neural networks that were 
trained with still images captured during endoscopy, but an American team has re-
cently managed to develop an algorithm trained on whole videos obtained during 
endoscopy performed in a Phase 2 trial evaluating mirikizumab, an anti-IL-23, in 
patients with moderate to severe UC, enabling the calculation of the Mayo endos-
copic subscore with concordance of 0.844 and UCEIS score of 0.855 [21].

Studies addressing the automatic evaluation of lesion severity in patients with CD 
are more rare. The team of Kopylov has recently trained a neural network with more 
than 17,640 images of VCE taken from 49 patients with CD; 7,391 images showed 
at least one mucosal ulceration and 10,249 images were normal. The ulcers were 
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Figure 1. The utility of Artificial Intelligence in the management of IBD. 
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classified into three grades, from minimal to severe, by two experts, with an overall 
inter-observer agreement of only 31%, that still reached 76% for the distinction of 
grades 1 and 3. The neural network was able to distinguish grade 1 ulcers from grade 
3 ulcers with an accuracy of 0.91, grade 2 ulcers from grade 3 ulcers with an accuracy 
of 0.78, and grade 1 ulcers from grade 2 ulcers with an accuracy of 0.62, i.e. opening 
up perspectives for its use in the diagnosis and monitoring of patients with CD of the 
small intestine [22].

Applications of AI for the prediction  
of the response to treatment and relapse

Over the past decades, a better understanding of the pathophysiology of IBD has led 
to great advances, with more therapies available and revised therapeutic objectives. 
Indeed, the advent of biological therapies (anti-TNF, anti-IL12/IL23, anti-integrin) 
and small molecules (JAK inhibitors) has revolutionised the management of these 
diseases. The overall response to each of these treatments is however less than 50%, 
and it is still impossible to predict which IBD patients will respond to these treatments. 

AI-based systems have therefore been developed in order to predict the responses 
to each treatment available against IBD. Waljee et al. have for example developed an 
algorithm that uses the age and certain common biological parameters to distinguish 
responders from non-responders to a thiopurine treatment with an AUROCs of 0.856, 
versus 0.594 for 6-TGN concentration determination [23]. The same team used data 
from the GEMINI clinical trial, evaluating the efficacy of Vedolizumab in patients with 
UC and CD, to develop a machine learning-based model that could predict in the 6th 
week which patients would stay in clinical remission without corticosteroids in week 
52, with an AUROCs of 0.73 for UC, and 0.75 for CD [24,25], allowing a selection of 
the patients in which Vedolizumab should be maintained in the absence of apparent 
benefits at week 6. More recently, a multi-omics analysis was conducted to identify 
transcriptomic biomarkers and genomic predictors of endoscopic response to usteki-
numab treatment with diagnostic accuracy reaching 98% [26]. In the framework of 
acute severe colitis, predicting the response to treatment is even more important, 
considering that approximately 15% of patients still require a colectomy in 2020… 
Inefficient medical treatment may delay the surgical treatment, raising morbidity and 
mortality in this context. A French study developed an algorithm based on microRNA 
expression profiles determined from colonic biopsies obtained from UC patients pre-
senting as severe acute colitis, enabling the identification of corticosteroid responders 
with an accuracy of 93%, infliximab responders with an accuracy of 84% and ciclos-
porin responders with an accuracy of 80% [27]. More recently, an Indian team used 
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neural network based on simple clinical and biological parameters, such as the blood 
levels of hemoglobin and serum albumin, to efficiently predict the response of severe 
acute colitis to drug therapy [28]. 

AI can also be used to predict the course of IBD. A neural network analysing biop-
sies obtained from CD patients at an early stage was able to identify those at risk of 
stenotic and/or fistulising progression and those at risk of surgery with an accuracy of 
over 80% [29]. The team of Waljee developed a different model based on the analysis 
of electronic medical records to predict hospitalisations and the need to use corticos-
teroids in the following 6 months with AUROCs of 0.87 [30]. 

Conclusion and perspectives

 AI is a growing discipline with the potential to revolutionise clinical deci-
sion-making for IBD. Machine Learning offers the possibility of aggregating large 
amounts of data to improve our performance in the diagnosis of IBD, to homoge-
nise our practice through the automated evaluation of endoscopic severity of inju-
ries, and to predict the response to treatment and the evolution of the disease for 
more personalised Medicine. AI should also improve the endoscopic detection of 
non-conventional dysplastic lesions that are specific to IBD and that are currently 
difficult to detect by standard endoscopy. Some obstacles remain before AI can be 
implemented in common practice, but deep learning will for sure be our compa-
nion in the near future for daily clinical practice and the management of patients 
with IBD.
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AI and pancreas

by Geoffreoy Vanbiervliet 1 
1CHu de Nice

Medical applications of artificial intelligence (AI) are raising considerable interest. 
This is relatively easy to understand, considering that AI is an easy (contrary to what 
is usually thought) and effective means of achieving greater precision, earlier and 
more reproducible diagnoses and saving time or rather accord more time to each 
patient. Pancreatic diseases, because of their dire prognosis (such as for pancreatic 
ductular adenocarcinoma), the therapeutic and surgical consequences they imply, re-
quire a diagnostic agility that is still insufficient today. AI in pancreatic diseases is still 
in its infancy, but one can guess that it will bring so much dexterity to the practitioner 
in the coming years that it will make it an irreplaceable tool. The aim of this chapter 
is to present the first results of AI in pancreatology, with a brief mention of the use of 
echo-endoscopy, which is essential in the field.
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Deep learning and pancreatic imaging

The assessment of AI for pancreatic imaging is still in its infancy. The use of deep 
learning for the analysis of CT images of the pancreas has only recently been des-
cribed. A study from Taiwan reported a diagnostic precision of AI of 0.989 with an 
almost perfect area under the curve (ROC) of 0.999 (95% CI: 0.998 to 1.000) for the 
diagnosis of pancreatic adenocarcinoma [1]. The system was also significantly more 
sensitive than the radiologist (0.983 vs 0.929, i.e. a difference of p=0.054 [95% CI: 
0.011 to 0.098]; p=0.014). The same is true with MRI for which preliminary studies 
report for the moment lower area under the curve, of between 0.7189 for inflamma-
tory pancreatic disease and 0.93019 for the diagnosis of neuro-endocrine tumors [2]. 
Additionally, in this multicenter retrospective study, the correlation with the human 
reader was excellent (κ coefficient of 0.8862 (CI 95%: 0.7759 to 9738)). To date, no 
study has been published on the testing of AI for percutaneous ultrasound of the 
pancreas. In summary, the literature regarding non-invasive pancreatic cross-sectional 
imaging is promising but preliminary. 

AI and endoscopic ultrasound imaging of the pancreas

Diagnosis of adenocarcinoma 

One of the problems in pancreatology is the inability to distinguish tumor tissue from 
inflammatory or even normal tissue (Table 1). Despite the modern imaging techniques, 
an inappropriate diagnosis of cancer still accounts for almost 7% of cephalic duodeno-
pancreatectomies [3]. Surprisingly, the first studies proposing AI as a tool to highlight 
the components and characteristics of pancreatic tissue can be tracked back to the year 
2000. Three studies between 2000 and 2008 have been published that offered only 
weak level of evidence, but paved the way for the use of AI to aid in the early diagnosis 
of pancreatic ductular adenocarcinoma. 

The seminal publication of 2001 by a team from the Mayo Clinic demonstrated that a 
computer software can digitize pixel columns with varying levels of gray on an image of 
a pancreatic mass scanned with a mechanical radial echo-endoscopy probe [4]. 

Histological analysis was available for each lesion analysed. While the software only 
interpreted a single image generated by a probe that is today considered obsolete, without 
any additional clinical or iconographical support, it already had a performance compa-
rable to that of a human expert, perfectly sensitive (100%) but still not specific (50%). 

The use of neural networks was reported in 2008 for the analysis of pancreatic images 
obtained using endoscopic ultrasound (EUS). After training the system with images of 
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normal tissue areas, with typical signs of chronic pancreatitis (lobularity, calcifications 
and hyperechoic appearance) and adenocarcinoma, Das et al. [5] showed that the soft- 
ware obtained an excellent area under the curve of 0.93 (AUROC) in terms of diagnostic 
precision in a validation cohort. 

The same mathematical techniques based on neural networks have been used for the 
analysis of elastography histograms and contrast-enhanced harmonic EUS (SonoVue®) 
in the context of exploration of syndromes of pancreatic mass by EUS [6-7]. With these 
two methods widely used in current medical practice, they led to an improvement in 
the area under the curve in diagnostic performance: the software increased the ability 
of tumor elastography to distinguish benign vs malignant lesions from 0.847 (95% CI : 
0.721 to 0.972) to 0.957, and pseudo-tumoral pancreatitis vs adenocarcinoma to 0.965 
[6]. A gain of sensitivity was also noted when the software was coupled to quantitative 
evaluation of the contrast-enhancement (84.8% for fine needle puncture vs 87.5% for 
contrast-enhanced EUS vs 94.6 % for contrast-enhanced EUS coupled to AI) [7]. The 
common limitations of these initial studies were the small size of the validation cohorts, 
an internal cross-validation, a lack of centralised reinterpretation or comparison with 
the performance of human experts, and the absence of histological proof for all tissues 
analysed, especially in cases of chronic pancreatitis. 

More recently, three studies gave a solid ground to the concept of Endoscopic Ultra-
sound computer-assisted diagnosis (EUS-CAD). Using either neural networks of sup-
port vector machines, the texture of echoendoscopic images was analysed as a way to 
perform a differential diagnosis of pancreatic cancer vs chronic pancreatitis [8-10]. The 
diagnostic precision of these mathematical models was high, ranging from 87 to 98%, 
eventhough only one internal cross-validation method was adopted. 

Finally, «Deep Learning» was only applied in pancreatic endoscopy in 2020 in a preli-
minary prospective Japanese study on 139 patients (76 with adenocarcinoma, 34 with 
chronic pancreatitis and 29 with normal pancreas) [11]. 920 images were used to train 
and validate a convolutional neural network, of which only 470 were used as a testing 
cohort (47 cases separately and independently tested). The system performance was 
compared either to histology (in case of adenocarcinoma) or echo-endoscopic diagno-
sis (Rosemont Classification for EUS evaluation in case of chronic pancreatitis). The 
software reached a sensitivity of 92.4%, specificity of 84.1%, positive predictive value 
of 86.8% and negative predictive value of  90.7%. These results are obviously ex-
cellent and virtually identical to the performance achieved with the best fine needles 
used for pancreatic biopsy under EUS. 
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AI seems highly comparable and perhaps even better than human experts in the 
field. A recent retrospective study on a test cohort of 123 patients firstly confirmed 
that the inter-observer correlation was moderate (kappa coefficient of 0.458) among 
experts (seven in this study). It then showed that, compared to human experts, the 
machine had significantly higher diagnostic performance for the main pancreatic di-
seases, including adenocarcinoma (75.6% vs 61.6%; p=0.026) [12]. 

Diagnosis of pancreatic cystic lesions

Optimising the diagnosis of pancreatic mucinous cystic lesions and the estimation of 
their malignant potential is the holy grail of EUS and it has inspired multiple attempts 
using EUS-CAD. Only one retrospective study has been published to date, but it is gui-
ding the way [13]. This study was based on a cohort of 206 patients with a diagnosis of 
intra-pancreatic mucinous papillary tumor (IPMPT), established by pathological exa-
mination of the resected specimen. Among these patients, a test cohort of 50 patients 
(including 23 with cancer) and 3,970 endoscopic ultrasound images of IPMPT was 
analysed. The area under the ROC regarding AI performance for the diagnosis IPMPT 
was 0.98, significantly higher than in the presence of a nodule (0.74, p=0.001). The 
diagnostic performance of the machine (94%) was not only superior to that of humans 
(preoperative diagnosis made by the operator) (56%), but also to that of the selected 
indications of surgery, relative (40%) and absolute (68 %), as defined by international 
recommendations. 

Diagnosis of Autoimmune pancreatitis 

Autoimmune pancreatitis (AIP) of type I is typically found in the context of jaundice 
and pseudo-obstructive syndrome in people aged >60 years, making the diagnosis 
difficult. In this context, the use of AI to distinguish between inflammatory tissue le-
sions and adenocarcinoma makes sense. The team of Michael Levy at the Mayo clinic 
has recently reported its retrospective experience based on 4,945 images and 1,852 
EUS videos obtained from 583 patients who presented AIP, chronic pancreatitis, ade-
nocarcinomas as well as normal pancreas [12].  

The convolutional neural network was built with a well-known technique and trained 
and validated with randomly-assigned cases (460 patients, of which 118 (25.7%) had 
AIP) and a test cohort (123 patients including 28 (22.8%) with AIP). The performance 
speed of the system was remarkable since it reached 955 images per second, well 
above the 30 required to perform real time analysis of EUS with its current standards. 

The diagnostic performance obtained was excellent, especially when only the videos 
were analysed. The sensitivity and specificity of the system for its ability to distinguish 
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Author, year N Technique

Diagnostic accuracy 
(AUROC) Sensitivity (%) Specificity (%)

Norton ID, 2001 35 (14 PC et 21 AC) Mechanical radial echo-endoscopy 80 100 50

Das A, 2008 56 (22 PN, 12 PC et 22 
AC)

Mechanical radial echo-endoscopy 0,93 93  
[IC 95% (89-97)]

92  
[IC 95% (88-96)]

Saftoiu A, 2008 68 (22 PN, 11 PC, 32 AC et 
3 TNE)

Linear electronic endoscopy and elasto-
graphy (histogram)

0,965 - -

Zhang MM, 2010 216  (153 AC, 43 PC, 20 
PN)

Écho-endoscopie linéaire électronique 0,98 94,3 99,4

Zhu M, 2013 388 (262 AC et 126 PC) Linear electronic endoscopy 0,94 96,2 93,4

Saftoiu A, 2015 167 (112 AC et 55 PC) Linear electronic endoscopy and elas-
tography and contrast enhancement 
(SonoVue®) (Time-intensity curve)

94,6 [IC 95 %  
(88,2-97,8)]

94,4

[IC 95% (83,9-98,6)]

Ozkan M, 2016 323 (202 AC et 130 PN) Linear electronic endoscopy 0,875 83,3 93,3

Tonozuka R, 
2020

139 (76 AC, 34 PC, et 29 
pancréas normaux)

Linear electronic endoscopy 0,94 92,4 84,1

Marya NB, 2020 123 (60 AC, 28 AIP, 16 PC 
et 19 pancréas normaux)

Linear electronic endoscopy 0.976 95 

[IC 95% (91-98)]

Images fixes

Table 1. Diagnostic performance of AI and echo-endosco-
pic diagnosis of pancreatic adenocarcinomas.
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Author, year N Technique

Diagnostic accuracy 
(AUROC) Sensitivity (%) Specificity (%)
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Das A, 2008 56 (22 PN, 12 PC et 22 
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Mechanical radial echo-endoscopy 0,93 93  
[IC 95% (89-97)]
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[IC 95% (88-96)]

Saftoiu A, 2008 68 (22 PN, 11 PC, 32 AC et 
3 TNE)

Linear electronic endoscopy and elasto-
graphy (histogram)

0,965 - -

Zhang MM, 2010 216  (153 AC, 43 PC, 20 
PN)

Écho-endoscopie linéaire électronique 0,98 94,3 99,4

Zhu M, 2013 388 (262 AC et 126 PC) Linear electronic endoscopy 0,94 96,2 93,4

Saftoiu A, 2015 167 (112 AC et 55 PC) Linear electronic endoscopy and elas-
tography and contrast enhancement 
(SonoVue®) (Time-intensity curve)

94,6 [IC 95 %  
(88,2-97,8)]

94,4

[IC 95% (83,9-98,6)]

Ozkan M, 2016 323 (202 AC et 130 PN) Linear electronic endoscopy 0,875 83,3 93,3

Tonozuka R, 
2020

139 (76 AC, 34 PC, et 29 
pancréas normaux)

Linear electronic endoscopy 0,94 92,4 84,1

Marya NB, 2020 123 (60 AC, 28 AIP, 16 PC 
et 19 pancréas normaux)

Linear electronic endoscopy 0.976 95 

[IC 95% (91-98)]

Images fixes

Table 1. Diagnostic performance of AI and echo-endosco-
pic diagnosis of pancreatic adenocarcinomas.
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AIP from chronic pancreatitis were 94% and 71 %, respectively with an area under the 
curve (ROC) equal to 0.892 (CI 95%: 0.829 to 0.946); for the ability to distinguish 
AIP from adenocarcinoma, 90% and 93%, respectively with an area under the curve 
(ROC) of 0.963 (CI 95%: 0.941 to 0.981). Finally, the ability of the system to distingui-
sh AIP from adenocarcinoma was compared with the performance of human experts. 
Specificity was nearly identical, with 88.2% (CI 95%: 72.6% to 96.7%) for AI vs 82.4% 
(76.9% to 87.0%) for human experts, but the machine performed better in terms of 
sensitivity (88.2% (CI 95%: 63.6% to 98.5%) vs 53.8% (CI 95%: 44.4% to 62.9%). 

Training of technical aspects of pancreatic endoscopy 

Training and learning recently became a field of application in AI. We know that 
training in the field of EUS takes a long time and that it is hard to master, making its 
end performance operator-dependent in clinical practice. A Chinese team recently 
proposed an AI-based platform for the training and quality control of AI [14]. Six 
pancreatic areas were identified and anotated beforehand in 19,486 images. Internal 
and external validation was performed and test stations were built based on 396 video 
clips. A comparison between the prediction model and EUS experts was made, and the 
learning speed was analysed in a cross over study with eight students. 

The results that were obtained were excellent. During the video test, the model 
achieved a precision of 86.2% for the classification of the areas, with an excellent cor-
relation coefficient between experts and the machine of more than 0.8. Regarding the 
recognition of pancreatic areas, the system increased the learning speed of students, 
with an increase in the diagnostic precision from 0.672 to 0.784 (i.e. a difference of 
0.112 (CI 95%: 0.058 to 1.663), p=0.002). 

In a world where one should never practice for the first time on a human subject, 
more codified and democratic use of medical simulation for the training of students 
is becoming the rule. We argue that such models will be advantageous in the assis-
tance during the first steps in humans. Accompaniment however remains crucial in a 
discipline where the eye and verbalised human experience have demonstrated their 
full value.

Future, hope and limitations 

This chapter aims to simply and clearly present the immense potential of AI in the field 
of pancreatology and in particular its exploration by endoscopic ultrasound. Because 
it is fast and easy to use, we expect that, in the close future, its diagnostic performance 
will increase, with an already excellent sensitivity that ranks this technology at the 
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same level or even above those achieved by ultrasound-guided needle biopsy. Who 
would not want to avoid the unnecessary comorbidity associated with an unnecessary 
puncture? Who would not want to avoid the inevitable variability of interpretation as-
sociated with the sometimes difficult to analyse samples? How could one refuse not to 
be tributary of a technique that necessitates, no matter how much we value it, a high 
degree of expertise, echo-anatomical, scientific and endoscopic knowledge. 

However, several limitations still stand in the way: in order to supply an AI system, it 
is necessary to have large databases with many annotated images, something that is 
not easy in EUS. The delay in this field in 2021, in France and elsewhere, is partially 
explained by complex legal and ethical aspects. This obstacle could be lifted with 
the organisation of anonymous databases containing encrypted basic medical data, 
providing a resource for research and development, as is for example done in the 
North American model of the WestHealth.org institute. Finally, we should get out of 
the outdated methodological debate based on the dichotomy between retrospective/
insufficient vs prospective/ideal. The quality of studies should inevitably increase. A 
remaining need will be to establish a gold standard for quality in histology, a criticism 
regularly made about studies that evaluate the diagnostic exploration of the pancreas 
by EUS. 

To address these three issues, it will be necessay to perform national, as well as  in-
ternational, multicenter studies before the technology can finally be included in our 
diagnostic arsenal.
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At the border of other disciplines: New technologies

by Lucille Quénéhervé
1  Department of Gastroenterology,  

CHU Brest La Cavale Blanche

The progress made with Artificial Intelligence (AI) in digestive endoscopy is now so ob-
vious that it tends to overshadow other technological advances and developments. Ne-
vertheless, new imaging modalities that are not based on video-endoscopy, either using 
white light or virtual chromoendoscopy, also benefit from new developments in AI. 

Some authors consider that two main branches of AI could be discerned in the medical 
field: a virtual branch and a physical branch [1]. The Virtual branch includes medical 
imaging, diagnostic aid, prognostic evaluation aid, etc., while the different types of ro-
bots belong to the physical branch. The applications of AI in endoscopic innovations are 
therefore multiple and in constant development.
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Innovative Medical imaging technologies and AI 

Confocal endomicroscopy

Confocal endomicroscopy (CEM) is a technology based on the detection of fluores-
cence emitted by a tissue and passing through a pinhole upon illumination by a 
laser. In general, it requires intravenous injection of a fluorescent contrast product 
with a defined wavelength. In digestive endoscopy, CEM can no longer be consi-
dered an innovative technology, but the prospect of performing targeted optical 
biopsies in real time thanks to the automatic interpretation of the images is raising 
interest. Indeed, the development of CEM is currently limited by the necessary 
expertise required to interpret the images that are very different from those which 
are obtained by endoscopy using white light. A few studies have been published 
on AI applied to CEM.

Upper Digestive tract

Barrett’s mucosa, as a preneoplastic condition of the oesophageal mucosa, consti-
tutes a perfect model system for the development of imaging techniques. In order to 
build and train a reliable computer-assisted system, a large amount of manually-la-
belled data is often necessary. Indeed, such pre-analysed data allow for the selection 
of the optimal subsets of features and they form the basis for a  robust classification 
by supervised learning. While it is relatively easy to collect a large number of un-
labelled images during each session of CEM, the collection of a large set of labelled 
CEM images is a long and expensive process. An American team has therefore pro-
posed to improve the classification of images of Barrett’s mucosa obtained by CEM 
by using unlabelled images using a strategy of semi-supervised learning [2]. A se-
mi-supervised deep neural network based on convolutional auto-encoding has the-
refore been developed to improve the classification of Barrett’s mucosa. The team 
postulated that if this technology works for analysing CEM images, it could also 
likely be able to analyse Optical coherence tomography (OCT) images, for example.

Lower Digestive tract

Improving screening and clinical decision making for colorectal cancer is also a field 
of active research for new endoscopic technologies. In a Romanian study, CEM images 
of healthy colonic mucosa and colic adenocarcinoma have been analysed by an AI 
system [3]. The computer-assisted diagnosis was applied to the images and the model 
was trained as a two layer neural network in order to perform an automatic diagnosis 
of malignancy according to seven parameters. 
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Optical coherence tomography (OCT)

Optical coherence tomography (OCT) is based on interferometry. A laser emits a 
beam of light that is divided into two arms, one directed towards the biological tissue 
(sample) and the other (reference) directed toward a mirror. When the sample light 
beam and the reference beam are reflected towards the sensor, they are combined 
to create interference. The corresponding profile is then analysed to determine the 
composition of the traversed media, according to the principle of time delay of the 
“echo”. A conventional OCT device scans through the surface of a tissue at different 
depths, forming a longitudinal scan called scan amplitude or A-scan, just like with 
ultrasound. By assembling the different A-scans measured during beam scan, a 2D 
reconstruction called tomogram or B-scan is obtained. By stacking the B-scans, a 3D 
image is obtained.

Upper digestive tract

Volumetric Laser Endomicroscopy (VLE) is a technology derived from OCT, in 
which a laser is emitted at the end of a catheter and automatically and longitudi-
nally withdrawn by rotation. The catheter is included in a balloon that is passed 
through the operator channel of the endoscope and inflated at the oesophagogastric 
junction, in order to perform a circumferential scan of the layers of the oesophageal 
wall with near micrometric resolution. Recent VLE devices also allow for the mar-
king of areas of interest with the laser, eventually allowing their removal during the 
same endoscopic session. Such devices could improve the detection of Barrett’s as-
sociated neoplasia, but the interpretation of VLE images is complex and takes a long 
time, due to the large amount of visual information with levels of gray.  

A Dutch team showed in a first study that an algorithm trained with clinical infor-
mation allowed for computer-assisted detection of dysplastic lesions within Barrett’s 
mucosa [4]. This study was based on the analysis of VLE images taken ex vivo after 
scanning resected specimens and included a correlation with the findings of histo-
logical analyses. However, computer-assisted detection that analyses neighbouring 
sections would improve the detection of neoplasia in Barrett’s oesophagus compared 
to single image analyses. The same team has therefore examined the feasibility of 
automatically extracting the data from multiple adjacent frames for computer-as-
sisted detection of neoplasia in Barrett’s mucosa [5]. However, these studies only 
relied on ex vivo-obtained images. 
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Another study was carried out [6], but this time from VLE images collected in vivo, 
demonstrating the effectiveness of encoding by main dimension (dividing a problem 
into many separate areas, in this case by separately analysing each column (A-line) 
of the image) followed by machine learning analysis. These encouraging data call 
for clinical validation in real time. 

Meanwhile, a US team has developed a technology to improve the VLE images 
in real time and identify areas of interest thanks to AI [7] (Figure 1). This scanning 
allows the endoscopist to mark lesions with a laser and perform targeted resection 
during the same endoscopic session. A prospective study is underway in the USA to 
validate this technique.

Lower digestive tract

An American team has developed a convolutional neural network in order to reco-
gnise the pattern of human colon mucosa from images obtained with OCT scanning. 
The network was trained with images obtained ex vivo from surgical specimens and 
could successfully distinguish between normal colorectal mucosa and neoplastic tis-
sues with an area under the curve (AUCROC) of 0.998 [8]. The authors suggest that 
the OCT coupled with pattern recognition could give a precise computer-assisted real 
time diagnosis during a colonoscopy.

Hyperspectral imaging

Hyperspectral imaging is based on the collection and analysis of narrow and conti-
nuous strips with wavelengths that are not limited to the visible spectrum, but instead 
the whole electromagnetic spectrum. This tool could be used to determine tumor 
margins during a surgical tumor resection [9]. Within oesophageal resection samples, 
different areas were classified as cancerous areas or not (Figure 2). The objective of 
the researchers was to develop a perioperative modality that would guide the surgical 
procedure. In the future, we predict that such an approach could for example help to 
determine the margins of a lesion before performing a submucosal dissection.

Robotic endoscopes and AI 

Several teams are currently developing robots for flexible endoscopy in order to: 1) 
facilitate the progression in the digestive tract while limiting undesirable effects of the 
examination; 2) assist the operator during a technical procedure, such as a resection 
for example [10-12]. Their practical implementation implies that these devices are 
able to complete the operator procedure, and not only be equal to the operator. Cur-
rently, the models that aim to help with «active» endoscopy do not work in complete 



80 L. Quénéhervé

I D 

I

A B

C

Figure 1. Volumetric Laser Endomicroscopy of Barrett’s mucosa in vivo with 
image processing by artificial intelligence. A luminal view facing an area of 
overlap (yellow arrow) with the three characteristics of dysplasia (orange: lack 
of stratification, blue: glandular structures, pink: hyper-reflective surface). (A) 
View of the proximal oesophagus. (B) A closer view of the area suspected of 
dysplasia. The en face view is also represented (C). Taken from [7]. 



81new technologies

i D 

i

a
n

n
o

ta
te

d
 rg

B 
im

a
g

e
C

la
ssifi e

d
 H

si d
a

ta
 

fo
r 2 c

la
sse

s
a

n
n

o
ta

te
d

 rg
B 

im
a

g
e

s
C

la
ssifi e

d
 H

si d
a

ta
 

fo
r 2 c

la
sse

s

F
ig

u
r

e 2. H
yperspectral Im

aging assisted w
ith artificial intelligence applied for 

the determ
ination of tum

or m
argins in surgically-resected oesophaeal cancer 

sam
ples. A

 tw
o-class approach w

ith annotated m
icrophotographs (A

,E) and 
hyperspectral im

ages (H
SI) (B

,F) and, on the right, a three-class approach ap-
plied to annotated m

icrophotographs (C
,G

) and hyperspectral im
ages (D

,H
). 

A
ccording to [9]. 

A
B

C
D

E
F

G
H



82 L. Quénéhervé

I D 

I

A

B

W
h

ite
 lig

h
t d

isp
la

y

O
C

t im
a

g
e

m
a

ste
r/o

p
e

ra
to

r

en
d

o
sc

o
p

ic
 im

a
g

e

Control panel

i m
 1

i m
 2

a
ffi  c

h
a

g
e

 
O

C
t

O
C

t

en
d

o
 P

en
d

o
 Ls

O
p

e
ra

to
r 

c
h

a
n

n
e

l

surg
ic

a
l 

in
strum

e
n

t

a
sp

ira
tio

n
 

c
h

a
n

n
e

l
rJ

tra
n

sla
tio

n

ro
ta

tio
n

Fle
xio

n

in
trum

e
n

t 1
 c

h
a

n
n

e
l

in
trum

e
n

t 2 
c

h
a

n
n

e
l

O
C

t c
a

th
e

te
r Lig

h
tin

g
C

a
m

e
ra

F
ig

u
r

e 3. Tom
ography m

odule for optical coherence im
aging adapted on an 

A
nubiscope robot (K

arl Storz). A
) A

 schem
e depicting the flexible interventio-

nal endoscope w
ith the steerable O

C
T (O

ptical C
oherence Tom

ography) cathe-
ter attached to a «slave» cart is connected to user controllers for teleoperation 
of the device: instrum

ent driver m
odule (IM

1, IM
2), volum

etric scanning actua-
tor (RJ

), O
C

T system
 (O

C
T), Endoscopic processor (Endo P), Endoscopic Light 

source (Endo LS) ; B
) A

 frontal view
 of the distal end of the robotised flexible 

interventional endoscope w
ith steerable O

C
T catheter. Taken from

 [13].



83new technologies

i D 

i

autonomy and they are in general controlled by the operator, a problem that could be 
solved once AI can interpret images in real time. In addition, models that use triangu-
lation have not yet been tested for the resection of large/difficult lesions. 

A French team has recently combined robotic and optical technological innovations 
and set up a system that analyses the colonic mucosa with OCT while a therapeutic 
procedure is performed [13]. The system consists of a steerable OCT cathether in-
serted in one of the two instrument channels of a robotised flexible interventional 
endoscope, the other channel being for example used for surgical forceps (figure 3).

Conclusion

Progress in videoendoscopy combined with progress in AI is so spectacular that new 
technologies are requested to provide practical solutions for problems that are consi-
dered impossible with classical endoscopy and in less-invasive conditions. Regarding 
imaging, AI can reduce the necessary expertise and time for their use. Regarding ro-
botics, the applications of AI are numerous, in order to analyse the digestive tract and 
the borders of the lesions. 
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At the border of other disciplines: Pathology

by Céline Bossard, Raphaël Bourgade
Department of Patholoqy, University Hospital of Nantes

Definition of digital pathology  
and introduction to Artificial Intelligence 

In a tense context of medical demography, the time of the pathologist is increa-
singly constrained, in part because of the increasing complexity of the patient 
diagnosis. In the era of personalised medicine, the diagnosis is increasingly based 
on the report of the pathologist and it needs to take into account a number of pre-
cise diagnostic classifications and a growing number of prognostic and theranostic 
factors. All of these characteristics place pathology at the heart of the healthcare 
pathway, and make it a cornerstone of therapeutic decision making, especially in 
oncology. 
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Since the year 2000 and the emergence of new scanners able to perform Whole 
Slide Imaging (WSI),  several hundreds of pathological slides can be digitized in a 
few hours, bringing our discipline to the digital era. Digital pathology, also called 
virtual microscopy, is an attractive educational tool for young pathologists. It also 
allows future developments and the use of Artificial Intelligence (AI) in pathology, as 
evidenced from the growing number of research publications on this topic. All of these 
developments should soon lead to a revolution in the daily practice of the pathologist. 

The so-called convolutional artificial neural networks (CNN), directly inspired by 
the visual cortex of animals, allow for the extraction and analysis of a considerable 
amount of information contained in virtual slides (WSI), in contrast to the small 
amount of information that is actually exploited by the eye of the pathologist. These 
massive data do not only contribute to the development of diagnostic algorithms (tis-
sue and cell recognition ...), but also to the prediction of the tumor mutational status/
its molecular signature and evolution. 

Technical constraints of WSI 

While the future looks promising, application of AI in pathology is still in its infancy 
because of various constraints and current limitations. 

Due to the very high level of resolution related in particular to their pyramidal archi-
tecture (figure 1), WSI are complex data to analyse. A slide that is digitized at a ma-
gnification of x400 (resolution of about 0.2 m/pixel), represents more than 200,000 
x 100,000 pixels (>20Gpx) and is several gigabytes in size in an uncompressed for-
mat [1]. The corresponding data are too large to be processed as such and require a 
preprocessing step, consisting in particular of cutting them into square tiles usually 
measuring between 128 and 1,024 pixels on each side (figure 2) [2]. The removal of 
empty tiles reduces the volume of the dataset. 

During supervised learning, the CNN are trained with digital images that are labelled 
by expert pathologists and that are therefore regarded as the «reference», or ground 
truth. Unfortunately, only a few databases with annotated images exist and their size is 
usually limited. Indeed, because of the cost required for their storage and implementa-
tion, that depends on computers with large storage capacities, only a small number of 
laboratories are currently using high-speed WSI scanning solutions integrated into their 
usual workflow. However, the performance and reliability of algorithms, which condi-
tion their validation and use in clinical routine, increase with the number and quality 
of available images. To overcome this current limitation and prevent over-fitting of al-
gorithms, data augmentation techniques are systematically applied in order to virtually 
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Figure 1.. Representation of the pyramidal architecture of WSI (Whole Slide 
Imaging), adapted from Lajare et al [1]

Figure 2. Tiling of a histopathological slide, adapted from a figure by Sali et al 
[2].
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Figure 3. Summary of the main techniques of data augmentation applied to 4 
tiles. BC : luminosity and contrast. HSV: saturation and tint. HED : Hematoxy-
lin-Eosin-DAB. Adapted from Tellez et al [3].

Figure 4. Heatmaps illustrating the importance of each tile during WSI classi-
fication as «normal», «celiac disease» and «non-specific duodenitis». The more 
the tile tends towards red, the greater its  impact on prediction. Adapted from 
Wei et al. [4].

Normal Celiac disease Non-specifi c duodenite
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multiply the training dataset. These techniques generally consist of rotation, inversion, 
magnification or even variation of staining, saturation or brightness (figure 3) [3].

Finally, the validation step, based on a metric and providing a direct measure-
ment of the performance of the system, relies on an external dataset that must be 
as varied as possible, in order to cope with the heterogeneity of the pre-analyti-
cal phases (fixation, impregnation, cutting, staining, mounting ...) found between 
different pathology laboratories. This current limitation is likely to be overcome 
in the near future, thanks to the automation of the workflow (that still remains 
mostly manual these days) for the fixed samples as they are put in a cassette. 

Applications of artificial intelligence to digestive pathology

Diagnostic classification

Diagnostic classifications based on the recognition of tissues/cells are at the heart of 
the work of a pathologist, and they are a research topic in artificial intelligence, espe-
cially in digestive oncology, as summarised in a recent review [4]. For example, O. Iizuka 
and his team became interested in the classification of gastric and colonic epithelial 
tumors from surgical biopsies. They set up a CNN trained with >4,000 slides in order to 
classify lesions as «adenocarcinoma», «adenoma» and «no neoplastic lesion». The corres-
ponding ROC curves were determined on an external validation cohort obtained from 
a different center, and found >0.972 for colon adenocarcinoma and >0.966 for gastric 
adenocarcinoma. In addition, in order to assess the broad applicability of their model 
and to define its possible limitations, a second external evaluation was carried out using 
data from TCGA (The Cancer Genome Atlas) cohort, consisting of surgical samples. The 
ROC curves were determined to be 0.982 (0.968 to 0.991 95% CI) for colon adenocar-
cinoma and 0.924 (0.887-0.952 95% CI) for gastric adenocarcinoma, demonstrating the 
model’s ability to analyse images of different sizes and different levels of complexity 
without direct supervision. 

Another important demand of pathologists regarding the performances of AI in daily 
practice, in addition to the reliability of the algorithms, is the medical time required for 
diagnosis. In this same study, 23 pathologists were thus evaluated for their interpreta-
tion of 45 gastric adenocarcinoma slides, with a maximum time of 30 seconds per case. 
Human intelligence reached an average level of accuracy of 85.9% of correct answers, 
well below the trained model, which takes between 5 and 30 seconds to make a diagno-
sis with an accuracy of >95%. 

Other works focused on Barrett’s oesophagus and the recognition of metaplastic and/
or dysplastic lesions or adenocarcinomas from sample biopsies from a dataset consisting 
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of more than 500 slides and had an average accuracy of 0.83 (0.80-0.86 95% CI) [5]. 
A. Kiani studied the impact of a trained model on the performance of 11 pathologists 
regarding the ability to distinguish cholangiarcinomas from hepatocellular carcinomas, 
proving the complementarity of this association [6]. 

The application of deep learning to diagnostic classification is also possible outside of 
the field of tumor pathology. Some teams managed to train an algorithm to distinguish 
nonspecific duodenitis lesions from autoimmune lesions linked to celiac disease on duo-
denal biopsies with an accuracy of >95% [7,8]. Heatmaps representing the importance 
of each tile in the final prediction are shown in Figure 4. 

Nevertheless, while these classifications are mainly based on the global analysis at the 
tissue level, they could also be based on cell analyses. This was shown by Y. H. Chang 
in 2017, by correlating WSI analysis of pancreatic tumors stained with HES (white light) 
with their counterparts stained with DAPI (fluorescent light). By combining segmenta-
tion performed with machine learning and classification with deep learning, they were 
able to develop a model able to distinguish tumor cell nuclei from normal cell nuclei 
with an accuracy >90%. 

Substitution for complementary techniques:  
prediction of abnormalities and molecular signatures 

Although being extensively studied, diagnostic classification from WSI is not the 
only potential application of deep learning. Some teams have indeed developed 
algorithms that are able to predict the mutational status of a tumor or its gene ex-
pression profile by the mere analysis of WSI stained with HES. This very promising 
approach would make it possible to skip heavy complementary techniques that 
can be cumbersome and time-consuming, such as immunohistochemistry or even 
molecular biology analyses based on NGS (Next Generation Sequencing), WES 
(Whole Exome Sequencing), etc. These techniques are essential for the identifica-
tion of diagnostic, prognostic and theranostic markers, that are essential for the 
therapeutic management of the patient, especially in the era of personalised medi-
cine. Recent publications have included the determination of the consensus mole-
cular subtypes of colorectal cancer, with a ROC curve determined to be at 0.84 [9]. 
Similarly, J.N. Kather and his team have shown that deep learning analysis of HES 
WSI could predict the presence of certain mutations (TP53, KRAS, BRAF...) as well 
as the presence of molecular signatures related to the tumor phenotype by AI [10]. 
Using these models in routine for diagnosis would permit a low-cost screening and 
might be interesting in order to identify the samples in which selected molecu-
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Figure 5. A) and B), heatmaps showing the distribution of tiles predicted to be 
MSI (microsatellite instability) or MSS (microsatelite stability) in colon cancer 
; C) the model was trained on a TCGA cohort, comprising 360 patients with 
colorectal cancer, then confirmed with an independent cohort of 378 patients 
; D) ROC curve detemined to be at 0.84 (0.73-0.91 95% CI) using the external 
validation cohort. TPR : true positive rate (sensitivity) ; FPR : false positive rate 
(1-specificity) ; E) Pearson coefficient measuring the correlation between the 
ratio of tiles predicted to be MSI (MSIness) and the expression of immunohis-
tochemical and transcriptomic markers in gastric adenocarcinoma (STAD) and 
colorectal cancer (CRC-KR, CRC-DX & the cohort DACHS). Adapted from Ka-
ther et al [11].
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lar analyses should be performed. J. N. Kather has also addressed the possibility 
of predicting the microsatellite status of gastric and colorectal adenocarcinomas 
with a ROC curve of 0.84 (0.72-0.92 CI 95 %) [11]. In order to strengthen their 
results, the authors have compared the proportion of tiles predicting MSI with the 
expression of the markers known to be associated with this status (Figure 5). The 
spatial visualisation of the molecular heterogeneity, as shown using heatmaps, will 
improve the understanding of the mechanisms of carcinogenesis.

Prediction of the course of the disease 

Today, all morphological markers (pTNM, mitosis, budding, differentiation, grade and 
vascular emboli), both phenotypic and molecular, are considered essential to establish 
a reliable prognosis, but many studies suggest that AI could help to skip some of these 
analyses. O-J. Skrede has for example set up a prognostic model based on WSI of sur-
gically-resected colorectal adenocarcinoma that can predict patient  survival [12]. This 
model, based on a dozen CNN was trained with more than 12,000,000 tiles taken from 
the slides of 828 patients, and it was able to differentiate between two groups of patients 
according to their prognosis with a hazard ratio to 3.84 (2.72-5.43; p<0.0001). In a uni-
variate analysis, the hazard ratio was at 3.04 (2.07-4.47; p<0.0001) after adjustment for 
known prognostic factors (pT, pN and venolymphatic emboli). 

D. Bychkov performed a similar study, by comparing three different approaches to 
differentiate between patients with good or bad prognosis from a WSI analysis of co-
lorectal cancer with deep learning [13]. The first approach was based on tumor grade 
estimation and Duke classification by three experienced pathologists. The second ap-
proach relied on the use of classical algorithms of machine learning, such as Logistic 
Regression, Naive Bayes classifier or support vector machine (SVM). Finally, the third 
approach was based on deep learning and recurrent neural network (LSTM: Long 
Short-Term Memory) trained with patterns extracted by a dedicated neural network 
(ACV-16). The performances of these three methods, measured at different resolutions 
and illustrated in Figure 6, demonstrate the superiority of automated approaches, 
when the resolution is sufficient. 

Conclusion and outlook

Digital pathological analyses by AI open up a limitless field of investigations for opti-
mised and personalised care of patients. By facilitating the integration and processing 
of all data, either morphological or phenotypic, clinical, biological, radiological or mo-
lecular, deep learning will certainly dramatically improve the diagnostic, prognostic 
and theranostic approaches, generating new markers and classifications. 
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However, the rise of these new tools inevitably generates ethical questions. Their 
reliability will be a prerequisite and will be a sine qua non condition for the confidence 
of the pathologist and the patient. This reliability directly depends on the quality of 
the data used in their training, as well as on their validation before their routine de-
ployment. Their foundation and the basis of their reasoning must be understood and 
criticised by the pathologist in order to be safely delivered to the patients. 

This new era of digital pathology will profoundly improve the work of the patho-
logist, who will not be replaced, but assisted by AI. Pathologists must become key 
players in this digital transformation, in order to benefit from the augmented perfor-
mance of a third eye! 
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Perspectives in the domain of AI  
& expected impacts 
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par Robert Benamouzig
Department of Gastroenterology and Digestive Oncology,  
Hospital Avicenne,AP-HP, University Paris Nord Sorbonne

Artificial Intelligence has already proven to be of practical interest for the prediction of 
the diagnosis of dermatological lesions, such as melanoma, or the recognition of cer-
tain retinal diseases. An artificial intelligence system with an interactive robot has been 
implemented this year in some emergency departments in Israel, the US and Great-Bri-
tain to help sort and streamline the flow of patients. Artificial intelligence is rising as a 
powerful means of exploiting data from radiological imaging and more recently, endos-
copy and pathology. The previous chapters of this book devoted to AI in our discipline 
have certainly convinced you that major advances are expected with this approach in 
digestive endoscopy and other areas. The assistance in the detection and characterisa-
tion of digestive lesions gained with AI, while still in its infancy, will soon be essential. 

 Healthcare is a particularly important domain of application for the algorithms 
that specialise in the automated analysis of digital data, i.e. Artificial Intelligence. 

Clinical research

Numeric patient

Health politics

Automated

d algorithms

Complementarity 
between man  
and machine

Ethical concerns
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This is explained by two important observations: the economic and societal stakes 
and the increase in health data digitization seen in the past 15 years. This digitiza-
tion, estimated to be under 15% in the early 2000s, is now at over 95%. A recent 
analysis by the French Ministry of Economy identified artificial intelligence in 
health as a strategic economic stake for France, with around 150 existing com-
panies of varying size [1]. The importance of this issue is illustrated by the great 
French public investments that are underway, such as those given for the imple-
mentation of a health data platform (HDP), i.e. the «Health Data Hub» (HDH) [2]. 
This HDP was created on November 29th, 2019, in order to facilitate sharing and 
comparison of health data originating from multiple sources, and to promote re-
search. Its creation follows the recommendations of the report delivered in March 
2018 by the French deputy Cédric Villani entitled «Making sense of artificial intel-
ligence: for a national and European strategy». The evolution of the status of this 
structure, from a public interest group with a complex governance inhibiting its 
action to that of a company with simplified shares where the French state keeps 
the control with the majority of shares, is discussed at the parliamentary level. 
The existence of a privileged partnership between the HDP and a key private actor 
of the sector, Microsoft Health, implies that individual data are exported outside 
of the European Union, which is the subject of a debate regarding issues of law 
and sovereignty. On the other hand, the development of this approach will require 
addressing the challenges of technical interoperability between the many compu-
ter tools used, as well as issues regarding data stability over time. 

Artificial Intelligence will help to improve the diagnosis of diseases and new classifica-
tions are expected that will not only be based on «conventional» data, such as clinical, 
radiological, biological, pathological and molecular data, but that will also take into 
account the analysis, without a priori, of big data gathered in medico-administrative 
databases [3]. 

The combination of these big data produced in Health culminates in the global concept 
of the «digital» patient. The patient’s identity is associated with a large array of data 
consisting of images, biological data including genetic, metabolomic, microbiotic as 
well as environmental or behavioral data. 

Supervised or unsupervised analyses of these data will allow for a better diagnosis and 
a more accurate prediction of prognosis and therapeutic response. By so doing, this 
approach will contribute to the development of Precision Medicine. The data will also 
perhaps allow targeted preventive actions. 
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Clinical research is also already concerned. From this year on, an artificial intelligence 
system developed by Microsoft Health will permit an interaction with the patients 
consulting the clinicaltrial.gov website in real-time, which presents most of the clinical 
trials that are underway in a synthetic form. A conversational agent or chatbot will al-
low the collection of information via keyword analysis. The chatbot will guide patients 
toward the clinical trials that may interest them, noting the information collected 
during the electronic exchange. This democratisation of the approach could lead to 
increased awareness among patients and perhaps might facilitate their recruitment. 
Other chatbots have been developed to help improve patient follow-up during clinical 
trials. They will reduce the time between the occurrence of a possible side effect and 
its declaration. They will also replace some of the follow-up notebooks, which should 
improve monitoring, adherence to treatment and data collection, leading to optimisa-
tion of the time of research technicians. 

Artificial intelligence could also be an instrument of political health management at 
the local level. The study of healthcare pathways, the study of their prognostic im-
plications should lead to structural improvements. Comparisons between territories 
will refine the choice of care and improve the management of the resources that are 
already available. 

These developments involve patients and more widely citizens that will need to be 
informed if any diagnostic or therapeutic system involving artificial intelligence is 
proposed. Clear information should be considered, as is already done when a therapy 
is chosen, by honestly presenting the expected beneficial effects and the potential 
secondary effects. 

A global human supervision of artificial intelligence systems is and will remain neces-
sary. Maintaining a high level of independent expertise in these systems is essential to 
ensure sufficient mastery. Administrative marking, while not yet anticipated, should 
be considered and maybe should be inspired by the model of the French «Agence na-
tionale de sécurité du médicament et des produits de santé» (National Agency for the 
safety of Drugs and Health products, ANSM). 

Doctors will remain essential in the clinical decision process and they will never be 
replaced by a machine, no matter how important its contribution or its degree of «In-
telligence» may be. The doctors should keep control over machines, a major objective 
that is hardly attainable but that must be kept in mind during the development and 
adoption of a system. Alongside the implementation of these systems, appropriate 
initial teaching must be considered as well as continued training. This book will help. 
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Once its usefulness is established, the use of AI in Medicine will naturally prevail. It 
will imply issues regarding training on “primitive” technologies for young colleagues 
that are born with these new technologies already being available. How can new 
generations be trained for the optimal use of these systems while maintaining inde-
pendent human intellectual expertise outside the system? These questions may seem 
superfluous today, but they must be anticipated to avoid major setbacks. The currently 
available sophisticated aeronautical systems do not preclude future pilots from lear-
ning the basics of flying.  

The time spent by doctors on mastering and using these new technologies should also 
be considered, having in mind the current medical demographics. Currently, physi-
cians spend on average twice as much time consulting and filling in information on 
computer systems as they do on directly interacting with their patients. This unantici-
pated development is often overlooked and constitutes a significant cause of burnout 
because these additional tasks are often performed after a day of consultation. AI 
systems should allow automation of some of these tasks, such as recording of clinical 
information and automated coding of acts. 

Finally these systems open up new types of problems regarding data property and the 
necessary authorisations required, raising issues regarding human rights and indivi-
dual freedom. The development of poorly understood or non-mastered algorithms 
could become an important ethical problem. The need of a legal framework has only 
recently been considered at the French and European levels, but its principles and its 
application remain to be developed. The subject is economically and socially impor-
tant, and it is therefore likely that the development of AI systems will be at the heart 
of  international competition, with different groups of humans with different values, 
and this might be a difficult aspect to manage. 

To enable the harmonious development of these technologies and put them at the 
service of medical progress and our patients, we will need to expand our knowledge 
and master these challenges. The present book is preparing us for these challenges.
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What Professor Coron thinks  
of the CAD EYE system

ADR is a quality indicator. How do you 
see that CAD EYE in combination with 
LCI can help to improve ADR rates  
and benefits the patient? 
Detection of precancerous le-

sions is key to prevent colorectal 

cancer. It is now well established 

that ADR reflects the quality of 

the procedure and the expertise 

of the physician. However, there 

is a wide variability among physi-

cians in terms of both endo- 

scopic technique and motivation. 

This results in major differences 

in the use of ADR and the de-

tection of interval cancers. One major 

interest of artificial intelligence is that 

it will help in the standardization of 

the diagnostic performances of endos-

copists, and optimize the detection 

and treatment of precancerous lesions 

worldwide. LCI has been shown to help 

detect small flat lesions, in particular in 

the right colon. CAD EYE is a fantastic 

tool to detect subtle lesions that can 

be missed even by skilled endoscopists. 

For instance, a recent randomized stu-

dy has shown that lesions that are small 

in size, isochromatic, flat in shape, with 

an unclear boundary, partly concealed 

behind colon folds or on the edge of 

the visual field, benefit from computer- 

aided detection (doi: 10.1016/S2468-

1253(20)30051-0). This is also what we  

          see in our clinical experience with  

CAD EYE. Of course, CAD EYE 

can only detect what is in the 

field of view, which means that 

mucosal exposure is also a key 

parameter.  Endoscopic with- 

drawal technique must also be 

taught in combination with the 

use of LCI and CAD EYE. 

What is the importance for 
 you of having the complete package: 
 CAD EYE detection & CAD EYE  
characterization in one device? 
CAD EYE detection combined with 

CAD EYE characterization was the first 

« all in one » device developed by a 

company, and therefore represents a 

major step in the history of endoscopy. 

As early users, I must say that we were 

amazed by the real-time efficacy of the 

system. Within milliseconds, the system 

is able to predict lesion histology, which 

is of paramount importance to guide 

the decision-making of the physician 

during colonoscopy. The study publi-

shed in Endoscopy in 2021 by Weight 

Professor Coron, 
a leading figure  

of European 
endoscopy



et al. (doi: 10.1055/a-1372-0419) showed 

that the high accuracy of CAD EYE 

detection & characterization is similar 

to that of an expert. Of course, we need 

more data from multicenter prospective 

studies to confirm these results, as well 

as cost-efficacy studies but it is more 

than likely that upgrading detection 

and removal of precancerous lesions 

by endoscopy will decrease the burden 

of colorectal cancer on a large scale. 

These first results will also help non 

expert physicians to adopt AI as a tool 

to provide the best screening moda-

lity for their patients in daily practice. 

Furthermore, it is likely that the cost of 

AI systems will dramatically decrease 

overtime as more and more systems will 

equip endoscopy units.

·How do you see the benefit  
of CAD EYE to support  
young/starting endoscopists?
Training young endoscopists to detect 

and characterize colonic lesions re-

quires time and motivation from ex-

perts. It is one of the most challenging 

procedures since the risk of missing a 

potential lesion (and seeing an interval 

cancer occur years later) is an impor-

tant responsibility for the trainee. In 

addition, because colonoscopy is the 

most frequently performed examination 

under sedation or general anesthesia 

in most centers, it is impossible to have 

an expert assisting the trainee at every 

procedure. The reality is that, at least 

in France, the availability and the level 

of expertise of the supervisor is very 

variable according to the workload in 

the different endoscopy rooms. There-

fore, some procedures are performed 

by trainees without the oversight of 

the expert focused on their procedure 

all the time, and real-time decision in a 

short period of time makes it unethical 

and unrealistic for the expert to just 

review the video afterwards and sche-

dule another colonoscopy if a lesion 

was missed…Therefore, having CAD EYE 

detection and characterization is like 

offering the trainee a ‘virtual expert’ for 

every colonoscopy, and it also drama-

tically shortens their learning curve. My 

advice is that, beyond the use of CAD 

EYE, and according to the ESGE guide-

lines, physicians (trainees or experts) 

continue documenting lesions with high 

quality  images during colosconoscopy. 

The aim is to review these images with 

the final pathology in order to progress 

in optical diagnosis and not rely only 

on AI as a ‘simple technician’ would 

do, because the development of their 

human expertise is finally what matters 

the most, with patient’s optimal ma-

nagement. This is very easy to do with 

novel softwares that provide access to 

the whole integrated medical files of 

the patient from our offices, hospitals, 

and even from home! 



·Do you think that the simple user  
interface of CAD EYE is beneficial for  
physicians and easy in use, not inter- 
fering with the endoscopic image?  
How important is that for you? 
As previously said, it is amazing to see 

how CAD EYE is easy to use, and provi-

des instantaneous detection and cha-

racterization. Once the system is set up 

on the tower, it is immediately adopted 

by the majority of users. Of course, 

there still might be a minority of ‘re-

fractory people’ but I’m quite confident 

that it will finally equip the majority of 

units. It does not interfere with the  

endoscopic images provided the colon 

is sufficiently inflated. The only disad-

vantage is that it continues to highlight 

the lesion during the interventional 

part, i.e. endoscopic resection. There-

fore, I prefer to switch it off as soon 

as the lesion has been detected and 

characterized, to better focus on the 

different steps of endoscopic resection, 

then switch it on again for the rest of 

withdrawal. It will probably continue to 

progress, with specific characterization 

of sessile serrated adenomas/polyps 

(SSAPs) and superficial cancers, and 

the future looks bright! 
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